Improving the Maintenance Planning of Heavy
Trucks using Constraint Programming

Tony Lindgren'>2, Hakan Warnquist?, and Martin Eineborg?

! Department of Computer and System Sciences
Stockholm University, Stockholm, Sweden
2 Scania CV, Service Support Solutions
Sodertélje, Sweden

Abstract. Maintenance planning of heavy trucks at Scania is presently
done using static cyclic plans where each maintenance occasion contains
a fixed set of components. Using vehicle operational data gained from
on-board sensors we will be able to predict at which intervals each com-
ponent needs to be maintained. However, dynamic planning is needed
to take this new knowledge into account. Another benefit using dynamic
planning is that vehicle owners can influence maintenance plans with re-
gard to their business. For this reason we have implemented a prototype
of an automated maintenance planner based on constraint programming
techniques. The planner has successfully been tested on vehicles belong-
ing to Scania’s internal haulage contractor. In this paper we will describe
the planner and what we have learned using and developing it as well as
ongoing work on how the planner will be developed further.

1 Introduction

Scania Commercial Vehicles (Scania) is a manufacturer of heavy trucks, coaches
and engines for industrial and marine usage. This paper is concerned with Sca-
nia’s ongoing effort of improving its maintenance service offer. Better mainte-
nance planning is beneficial for the customers because they can utilize their Sca-
nia products in a more efficient manner and it makes Scania more competitive.
To achieve better maintenance planning, we have developed a new maintenance
planner that uses constraint programming techniques.

Customers are currently offered services such as Repair and Maintenance
Contracts enabling the customer to fixate the operating costs of the vehicle
[12]. When the vehicle manufacturer has full responsibility for vehicle repair and
maintenance, the cost of the repair and maintenance contract can be reduced by
customizing the maintenance planning for each individual vehicle. To achieve this
customization, more information regarding the current and predicted status of
the vehicle is needed. This information can be obtained by employing techniques
for Integrated Vehicle Health Management (IVHM) which is an area interested
in improving the safety, availability and reliability of vehicles [1, 7].

Using vehicle operational data gained from on-board sensors we can predict
when and how often a component needs to be maintained. The components’

individual maintenance requirements make it possible to create more efficient
maintenance schedules than using the present scheduling method where, three
modules consisting of fixed sets of components are scheduled for maintenance
with a preset periodicity [11]. The maintenance of an individual component is re-
ferred to as a maintenance point. When the maintenance points can be scheduled
freely with irregular periodicity, the task of creating an efficient maintenance plan
becomes too difficult for a human planner and there is need for an automated
planner.

As a Proof of Concept (PoC), we have implemented a maintenance planner
prototype using finite domain constraint programming techniques and evaluated
it on the haulage contractor responsible for driving goods to Scania’s factories
with promising results. We will also report ongoing work with the next generation
of the maintenance planner based on the lessons learned from the PoC with the
haulage contractor.

2 The Problem

A customer that utilizes a Repair and Maintenance contract wants to maximize
the availability of the vehicle and Scania as an issuer of the contract wants to
minimize the maintenance costs. Downtime is when the vehicle is intended for use
but not available. This time is costly for the customer because of loss of profit. We
want a maintenance plan where each component is maintained sufficiently often
to prevent components from breaking down and that has minimal interference
with the vehicle’s intended use. The customer cost of a maintenance plan is
dependent on the downtime, the number of maintenance occasions, the part
costs, and the time spent at the workshop.

The maintenance need of a component depends on how the vehicle is operated
by the owner. A vehicle that is operating with heavy loads may need oil changes
more frequently than one that is operating with lighter loads. The better we
can predict wear, the more correct maintenance intervals we can use for each
component. The vehicle has an internal network of connected computers for
controlling functions in the vehicle. The computers collect data about the vehicle
which can remotely be sent to a central server for further processing with the
purpose of computing the required maintenance intervals.

The inputs to the maintenance planner are the maintenance point intervals
of each component and optional user preferences in form of when maintenance
can be done and when it cannot be done. The output is a maintenance schedule
listing the dates for each maintenance occasion and, for each occasion, a list of
components that should be maintained, see Figure 1.

3 Current Solution

Today the maintenance plan for a vehicle is set when the vehicle is sold. This is
typically done by the seller together with the buyer by selecting one of a set of

Planner Plan

Maintenance points
with intervals
i points
with dates

User preferences

Fig. 1. Inputs and outputs of the maintenance planner.

predefined maintenance plans that best matches the vehicle specifications and
the buyers intended usage.

The predefined maintenance plans are developed and maintained by skilled
personnel having knowledge about both the products and the customer’s usage.
Vehicle usage is divided into six typical applications types. For each application
type and vehicle specification, a cyclic maintenance plan is given as the number
of kilometers between maintenance occasions with fixed maintenance protocols.
Maintenance is always done in a cycle of S-M-S-L occasions, where S = Small,
M = Medium, and L. = Large are different maintenance modules for maintaining
different sets of components.

There are a number of problems with the way maintenance plans are created
today:

— Much responsibility is put on the salesperson to know the product as well
as the customer’s usage of the product.

— Once created the plans are seldom updated even if the application of the
vehicle changes. Thus, it is possible that the maintenance a vehicle receives
does not correspond to its needs.

— Although the fixed S, M, and L modules make it convenient to plan, they
contain maintenance points that do not need to be grouped together with
the effect that components are maintained more than necessary.

— The current maintenance plans are coarse in the sense that the precision in
the type of application must be fitted into one of the six types of application.
Therefore the experts dictating when maintenance ought to be done, use a
safety margin given the uncertainty of the actual usage of a particular vehicle.
This has the consequence that plans are not individualized to the degree that
they could be.

4 An Automated Maintenance Planner

We have used Constraint Programming to create an automated maintenance
planner which has been installed and used by two workshops servicing 20 ve-

hicles belonging to the Scania Transport Laboratory which is a Scania-owned
transport company responsible for transporting goods between Scania’s factories
in Europe.

4.1 Motivation

The work load of the trucks is high and usage of around 16 hours a day is
not unusual. To avoid interference with the daily operation of the trucks, a
requirement from the fleet planner was that the trucks could only be maintained
every forth week for a maximum of four hours. Such requirements together with
previously mentioned goals of minimizing maintenance costs and offering better
services to customers was the main driving force for developing this maintenance
planner. The prototype was created to gain knowledge of how a solution could
be implemented and what aspects are critical for Scanias customers.

The planning problem is too complex to be solved manually. We therefore
chose to formulate the problem as a constraint satisfaction problem because
many of the requirements on the plan are naturally translated into constraints
and also because Constraint Programming techniques has historically been suc-
cessful for applications similar to this. For example see [10, 8, 5, 2, 6].

4.2 Formulation of the Constraint Satisfaction Problem

The maintenance planning of a single vehicle is formulated as an independent
Constraint Satisfaction Problem (CSP). A solution is a plan for all maintenance
points with a resolution of one week and a limited horizon. In the Scania Trans-
port Laboratory PoC each vehicle had around 80 maintenance points that needed
to be scheduled 52 weeks ahead.

Each variable in the CSP corresponds to a maintenance point that needs to
be scheduled in time. Where the Dm; refers to the domain of the i:th mainte-
nance point. The latest completion time (Ict) of a maintenance point refers to
its calculated maintenance interval. To reduce the solution space, a constraint
is added that dictates the minimum maintenance interval of each maintenance
point, i.e. earliest start time, (est). The est is user defined and typically between
one third to half of the calculated maintenance interval as shown in equation 1.
This also ensures an offset between two maintenance occasions are no closer than
the est. In all equations, I refer to the set of maintenance point variable indexes.

lcti

FEarliestStartTi 1V, el :est; =let; —
ariies artiLime €s C Offsetparam c [2’3]

1)

Domain :V; € I : Dm; = [est;, lct;] (2)

The usage of est; affects the i:th maintenance points domains as in equa-
tion 2. Maintenance point dependency chains are defined by assigning a starting
variable which has a domain value between est; and lct;. Each variable in these
dependency chains corresponds to an occasion of a maintenance point and the

value corresponds to the time when the maintenance should occur. Successive
maintenance points are then created until the planning horizon is reached. In
the dependency chains each new variable gets a domain with a earliest plan
starting time mpv; that is equal to or greater than the preceding maintenance
point variable mpv; + est; and a latest plan completion time for mpv; that is
less than or equal to mpv; + lct;, shown in equation 3 and equation 4.

EarliestPlanStartTime : 3; ; € I : mpv; > mpv; + est; (3)
LatestPlanCompletionTime : 3; ; € I : mpv; < mpu; + let; (4)

After the maintenance point dependency chains have been created, then, if
the user has defined certain periods when maintenance can be done (cbd), or
when it cannot be done (cnbd), these periods are handled as show below.

CanPeriod :V; € I : Dm; = Dm; N cbd (5)
CannotPeriod :¥; € I : Dm; = Dm; \ (Dm; N cnbd) (6)

In practice this means that cnbd periods are excluded from the variable do-
mains. If ¢bd is defined, then these periods constitute the variables domain. Each
dependency chain is related to one maintenance point which means that for our
PoC there are around 80 dependency chains.

Input and Output. The input consists of the periodicity of each maintenance
point expressed in kilometers and the times when each maintenance point was
last maintained. The periodicity is then converted into weeks based on the ex-
pected number of kilometers the vehicle will be used per week which can either
be set by the user or be learned from previous vehicle behavior.

If it exists, the solver finds a maintenance plan that satisfies all the con-
straints. This plan is then presented to the user as an Excel worksheet listing
the dates, expected mileages, and durations of all the scheduled maintenance
occasions, see Figure 2. The dates are approximate because the planner only
plans with a resolution of one week. The exact date within that week must be
set in dialogue between the fleet owner and workshop. The maintenance planner
can also output the maintenance protocols that shall be used for each occasion.

Heuristics and Propagators. The solver in the clp(FD) library is set such
that it will return the first maintenance plan it finds that satisfies all the con-
straints. This means that the search heuristics are important for the behavior of
the planner. The user can select between two search heuristics.

The first heuristic uses the built in parameters of the clp(FD) library so
that the variable, not yet assigned, with the smallest domain is chosen and the
maximum value of its domain is selected.

The second heuristic is specific for this problem formulation. Variables to
assign are selected in the same way as the first heuristic, but the value selection
is different. If assigned values corresponding to different maintenance points lie

[F™ e A = Bookl - Microsoft Excel o B8
Hor | Inse | Page| Forn| Dat:| Revi | viev| Acro| Tean| @ @ = & =
c34 = I b
A B € =
1 |Plan for vehicle with VIN: 2058182 Note thataplancanbe d |
2 |Plan activation date: 2013-04-16
3 |Plan activation milage: 900065
4 |Plan based on Km/week: 7103
5 |Plan score: 54
6
7 |Approximate Date Milage Estimated Time (Hours)
8 2013-05-14 928477 2,19 T
3 2013-06-11 956889 0,83
10 2013-07-09 985301 3,38
1 2013-08-06 1013713 1,3
12 2013-09-03 1042125 0,34
13 2013-10-01 1070537 0,25
14 2013-10-29 1098349 1,91
15 2013-11-26 1127361 139
16 2013-12-24 1155773 0,34
17 2014-01-21 1184185 1,91
12 o
4 4 »] sheet1 sheetz “sheets ~TJ 4]] 0]
Ready | |[E|onE 100% (<) y] (¥)

Fig. 2. An example of the maintenance plan of a vehicle.

within the domain of the selected variable, we select the assignment with the
highest value. If such a value does not exist, the variable is assigned to the highest
value in its domain like the first heuristic. The motivation for this heuristic is
that we want to co-locate maintenance points in time so that we get as few
maintenance occasions as possible.

Pseudo-code for the value selection heuristics are shown in Algorithm 1.
The search heuristic takes a constraint store as input and returns a modified
constraint store. The function VALSEL uses the constraint store and the variable
with the smallest domain to assign a value to the variable using the function
GETBESTVALUE. The function GETBESTVALUE uses the constraint store and
the variable with the smallest domain and returns either the highest value of
the intersection between the selected variable and any other assigned variable
or, if no such intersection exists, returns the highest value in the domain of the
selected variable. The function MAX returns the highest value of a domain and
the functions GETNEXTASSIGNED iterates over assigned variable in constraint
store and returns false when all has been shown. The function INTERSECT returns
the elements in the intersection and the function FIRSTBOUND returns true if it
is the first time its argument variable is assigned and false otherwise.

A new propagator was implemented for the controlling the maximum time
of each occasion. This propagator is executed whenever a variable is assigned a
value. Each maintenance point has a standard time associated with it, i.e. the
time for the mechanic to complete the maintenance point task. The propagator
has a week-time-list where it keep track of current summarized work time for
each week up to the horizon. For each new assignment this list is updated, and
each variable that is not assigned, is checked one at a time, if the summarized
standard time exceed the time limit or not. If the time limit is breached, the
week is removed from the variable’s domain. If the propagator cannot exclude a

Algorithm 1 Search heuristic for few maintenance occasions

Inputs: constraintStore, selVar
Outputs: constraintStore

function VALSEL(constraintStore, selVar)
tVal + GETBESTVALUE(constraintStore, selVar)
if FIRSTBOUND(tV al) then selVar « tVal
else
selVar # tVal
selVar < GETBESTVALUE(constraintStore, selVar)
end if
return constraintStore
end function

function GETBESTVALUE(constraintStore, selVar)
tempVal < 0
maxVal < 0
while var < GETNEXTASSIGNED (constraintStore) do
intSect < INTERSECT(selV ar, var)
if O # intSect then
tempVal < Max(intSect)
if tempVal > maxVal then mazVal < tempVal
end if
end while
if mazVal > 0 then
return mazVal
else
return Max(selVar)
end if
end function

value from any variable’s domain the propagator fails. The pseudo-code for the
propagator are shown in Algorithm 2.

The input is the constraint store, maximum time, week-time-list and the as-
signed week, the output is a possibly modified constraint store. The function
SUMASSIGNEDSTANDARD TIMES uses week-time-list and the assigned week to
update the week-time-list with the standard time of the corresponding mainte-
nance point. The function GETNEXTUNASSIGNED iterates over the constraint
store and returns the next not assigned variable. The function INTERSECT re-
turns the intersection between the variable and week. GETSTTIME returns the
standard time for the variable, i.e. a maintenance point standard time. GET-
NEXT iterates over a week-time-list and if no value are left return false. REVAL
removes the current week from the variable domain and, finally the function
NOMOREUNASSIGNED returns true if no more unassigned values are left to
iterate over in the constraint store.

Algorithm 2 Maximum time propagator

Inputs: constraintStore, week,weekTimeL, maxTime
Output: constraintStore

weekTimeL' < SUMASSIGNEDSTANDARDTIMES(weekTimeL, week)
repeat
var < GETNEXTUNASSIGNED(constraintStore)
intSect <— INTERSECT (week, var)
if 0 # intSect then
varWeekTime <+ GETSTTIME(var)
if maxTime < varWeekTime then
var’ < REVAL(var, week)
if var’ = () then return Fail
end if
end if
until NOMOREUNASSIGNED(constraintStore)
return constraintStore

4.3 Implementation

The maintenance planner is implemented in SICStus Prolog [14] using the clp(FD)
library for Constraint Logic Programming over Finite Domains [3]. Users inter-
act with the planner through a simple command prompt interface providing
functions for setting certain constraints, creating maintenance plans, and out-
putting maintenance protocols. A screenshot from the user interface is shown
in Figure 3. The user has the ability to create new maintenance plans, update
existing ones, view maintenance history, and set various settings.

5] C:\Windows\system32\cmd.exe - ubm_yss_eng.exe
2012-06-14 14:14
2013-04-85 13:23

C:\johh~Johh
port_lahrato

Conmands are C(always end input with a punctation "'."'>:
(s)earch parameter settings
(crreate plan for one truck {(createsz and stor
Cr>eplan before maintenace occasion (if truc not used as planned)>
C(udrite current plan for one truck to file (fo intout)
(n)ext wor p cccasion workorder for one truck (for
{d>ated occasion, workorder For one truck CF printow
Ch)istory of one truck to file (for printout)
(n)aintenaqce information for plan update (stores historyd
progran

Fig. 3. Main menu of the user interface.

4.4 Typical Usage Pattern

During the PoC at the Scania Transport Laboratory, the typical usage of the
maintenance planner was as following:

— One week before a scheduled maintenance occasion, the workshop planner
checks using telemetry the actual mileage of the vehicle and regenerates the
maintenance plan. If the mileage is lower or higher than expected, fewer or
more maintenance points needs to be done at this occasion.

— With the content of the next maintenance occasion fixed, the workshop plan-
ner prints out the maintenance protocol and orders the parts needed for the
occasion as specified by the protocol.

— When the vehicle is at the workshop, a mechanic performs maintenance
according to the protocol.

— After the maintenance, the workshop planner reports back into the system
which maintenance points that were addressed and creates a new updated
plan for the vehicle. When the new maintenance plan is created the workshop
planner may use the current mileage per week or manually set it to a new
value if a different driving behavior is anticipated in the future.

5 Results

The vehicles that participated in the study were all of similar type and had simi-
lar driving patterns. Table 1 shows a comparison between S, M, and L plans and
the automated planner for a representative vehicle from the Scania Transport
Laboratory. This vehicle is a long haulage truck that has the expected usage of
6 760 km per week. The interval between maintenance occasions with the S, M
and L program for such a vehicle is once every 90 000 km, or once every 13.3
weeks. For each maintenance occasion we have reported the standard time for
completing all maintenance points scheduled for the occasion. Despite that the
S, M, L program neither respects the periodicity or the time limit constraints

the sum of all standard times is higher. This is because the intervals for certain
maintenance points could be stretched further when it no longer has to fit within
the S, M, and L. modules. The gain is potentially much larger, because for this
study only a handful of the maintenance points had their intervals re-evaluated
while most were the same as in the S, M, L program (90 000, 180 000, or 360 000
km).

Table 1. Comparing standard method and new automated planner.

Standard New Automated Planner
Visits 8 11
Total Time 33.4 28.9

The experiment with the haulage contractor was intended as a PoC of gener-
ating maintenance plans automatically at a much finer granularity than before.
The haulage contractor requirements on the maintenance plan that could not
be satisfied with the previous planning method. For example, the largest main-
tenance module, L, takes longer than the required maximal four hours of stand
still.

6 Thoughts on the Next Generation Planner

The maintenance planner should, in the future, be extended to do optimization
instead of only returning the first solution. Hence we have started doing some
experiments using this set up. This section is dedicated to describing our current
findings in this experimental work.

The maintenance planning problem, as formulated, has few constraints asso-
ciated with it. Therefore, we must resort to using search while exploring possible
solutions. Using multi-core parallel search will let us explore a larger part of the
solutions space in a smaller amount of time than a single-core solution.

We choose to use the Gecode [13] toolkit for exploring a possible multi-core
solution. The reasons for this choice is that Gecode has built-in support for
parallel search, using a variant of work stealing [4] for handling and assigning
computational tasks to idle threads without more involvement from the user
than selecting the number of threads to be used. Gecode also has an excellent
performance record, winning the MiniZinc Challenge [15, 9].

Our intention is to use branch-and-bound techniques for optimization. So
far we have implemented an objective function to test the branch-and-bound
approach. The objective function allows users to set their preferences for few
maintenance occasions or minimizing waste using weights, where waste refers to
not utilizing maintenance point intervals fully:

cost = noOccassions X occasionsWeight + waste x wasteWeight. (7)

deadline_1

deadline_2
deadline_interval

Fig. 4. Deadline interval constraint for the matrix problem formulation.

When using a multi-core solution, it is important how much memory a par-
ticular problem formulation needs, because it will need multiple copies of the
constraint store. For our problem description we have identified two different
problem formulations. We will describe them and run experiment focusing on
their respective memory and CPU time needs.

Matrix Problem Formulation. One way to formulate the problem is to create
a matrix with the same number rows as there are maintenance points and the
same number of columns as there are days within the planning horizon.

— Variables. For each cell in the matrix a constraint variable is defined with
domain between zero or one. The assigned value at a specific row and column
denotes whether the maintenance point associated to the row should be
performed during the day associated to the column. A one means that the
maintenance point should be performed and a zero means that it should not.

— Constraints. Maintenance point intervals for a row are regulated by a con-
straint that all cells in the row up to the deadline interval should sum to
1. Hence only one maintenance occasion should occur within interval, as is
shown in equation 8. This constraint is repeated for each interval up to the
planning horizon.

interval
SumToOne : Z cell; =1 (8)
i=0

This is however not enough to ensure that the plans are correct because it can
be the case that a solution ends up with a distance between two one’s (1) that
is greater than the interval. This is illustrated in Figure 4. Here two constraints
are set, where each of their interval must sum to one but still we can end up
with a plan that violates the deadlines.

One way of correcting this is to add a constraint which keep track of the
number of zeros in a row and make sure that the length of the zeros do not ex-
ceed the deadline. This constraint is illustrated in equation 9, where zerosInRow
takes the i:th row and returns the maximum consecutive number of zeros and,
maxZeros is the limit for consecutive zeros on this row.

zerosInRow(row;) < maxZeros;. 9)

Unable to express this constraint as an extensional constraint, we imple-
mented a new propagator. The propagator uses the notion of 'blocks’ of zeros,

Memory needed for exhaustive search using matrix and dependency chains
160000 T T T T

T T T
dependency chains —+—
140000 ~_.matrix b

120000 - e -
100000) o -
80000 - L . -

Memory (KB)

60000 =
40000

20000

0 1 1 1 1 1 1 1 1 1
0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007 9e+007 1le+00¢

Size of problem

Fig. 5. Comparison of memory needs.

which can be merged if two blocks are adjacent to each other, creating a bigger
block. New blocks are created when a new zero is assigned that has no adjacent
blocks. The propagator first checks the constraint store so that no deadline in-
terval is breached. Then it propagate a one if there exists a block with the same
length as the interval minus one. With this propagator the planner behaves as
desired.

As with the previous planner, the user can specify the minimal interval with
a parameter.

Dependency Chains. The second problem formulation is the same as the one
used for the first single-core maintenance planner. Each variable corresponds to
an occasion of a maintenance point and the value corresponds to the time when
this occasion should occur.

Experiment. We have implemented both formulations of the problem in Gecode
3.7.3 and examined their CPU usage and memory needs when conducting an
exhaustive search for a planning problem with one maintenance point and a
maintenance interval of 10 days. The planning horizon varied from 20 days to
80 days, which causes the total number of possible solutions to vary from 100 to
100 million.

They executed on a quad-core Intel i7-2760QM processor running at 2.4 GHz.
The comparison of the memory need is shown in Figure 5 and the comparison
of the CPU times is shown in Figure 6.

As expected, the matrix problem formulation consumes more memory and
more CPU time to complete the exhaustive search problems. In this experiment
we had only one maintenance point and the maximum planning horizon was 80
days. In a realistic setting we have almost a hundred maintenance points and
we need a planning horizon of up to 365 days. Thus in our application using the

Time needed for exhaustive search using matrix and dependency chains
7e+006 T T T T

T T T
dependency chains —+—.
6e+0006 - matrix - .

5e+006

40+006 — . ' s

3e+006

Time (ms)

2e+006

1e+006

0 - 1 1 1 1 1 1 1 1
0 1e+007 2e+007 3e+007 4e+007 5e+007 6e+007 7e+007 8e+007 9e+007 1le+00¢

Size of problem

Fig. 6. Comparison of CPU time.

dependency chain problem formulation is preferable to using the matrix problem
formulation.

7 Discussion

Scania gained much experience from developing a maintenance planning system
for its internal haulage contractor, both in terms of what functionality a work-
shop planner needs and how constraint programming can be used to realize this
functionality. Based on this new knowledge, work has begun with the next gen-
eration of the maintenance planner, as already mentioned. Apart from improved
user interface we will implement more ways for the user of the planner to in-
fluence what constitutes good plans. Here we are considering more constraints
and optimization parameters. Furthermore, the group of intended users of the
planner is expanded to include fleet planners and sales personnel. We also want
to do more exact planning and have decided to use a time scale of days instead
of weeks for this next generation of the planner.

Development The development of the planning prototype was not more dif-
ficult than a single developer familiar with constraint programming techniques
could design and implement the entire application in a few months. However,
more effort was required from the experts that had to set maintenance intervals
since this was made manually. The intention is that in the future these intervals
will be set automatically based on data.

When the application was delivered to the workshops, a Scania engineer cre-
ated the first plan for all the vehicles based on a default expected mileage. The
users at the workshops were only supposed to use the application to read out
maintenance plans and protocols and to input the actual times and mileages
when each maintenance point is performed. Early in the experiment, it became

evident that a re-plan functionality was needed to make sure that the main-
tenance plan was correct at the designated date for maintenance. Usually the
workshop planner re-planned the schedule for a vehicle scheduled a couple of
days before the planned maintenance occasion. After this functionality had been
added we saw that sometimes planned maintenance occasions could be avoided
due to less vehicle usage than predicted. In some cases it was the opposite and
more maintenance was needed than in the previous plan.

Another appreciated functionality that was added later was the possibility
to output a list of consumable goods (e.g. oil quantities and part numbers of
filters) together with the maintenance protocol. This made it possible for the
workshop to make sure that all necessary products were in place in time for the
maintenance occasion. This was not as important with the fixed maintenance
protocols since the list of consumable goods are always the same.

Release to Customers Because of the rather primitive user interface, educa-
tion of the managers responsible for planning at the workshop, was important
for the users to understand how the system worked. As a part of this, users were
encouraged to create simulated maintenance plans using the system.

One user at the workshops was assigned as superuser. The superuser and
developer had regular meetings where they could discuss problems and questions
regarding the application. The superuser could collect opinions about the system
from the other users and also educate them. During the first two months many
changes to the application were made because of feedback from the users.

Initially the program was unstable and would crash if fed with illegal input or
if the constraints were set so that no valid plan existed. Also there were problems
with the dynamic creation of maintenance point variables causing unnecessary
maintenance points to pile up at the end of the plan. This had no real conse-
quence for the performance of the plans because the remainder of the plan was
correct and the unnecessary maintenance points would always be pushed ahead
whenever the maintenance plan was re-planned. However it looked bad and con-
fused the users. All data such as previous maintenance and mileages were saved
in Prolog using its program state. This prevented users from correcting erro-
neous input. Instead users were instructed to store and keep copies of previous
entire program states to do roll-back upon if the system contained information
that did not align with reality.

Once these and other problems were corrected and the users had become
acquainted with the program, we started getting positive feedback from the
users. Some users even preferred the command prompt interface over a graphical
user interface because interaction with the program was really fast.

Apart from the obvious fact that we could not satisfy the requirement of
having fixed maintenance occasions every fourth week with a time limit of four
hours, using the standard maintenance program, a preliminary comparison show
that gains in time and money can be made with the new planning system.

8 Conclusion

The possibility to individually plan each maintenance point allows us to create
more efficient maintenance plans that also consider the needs of the vehicle
owner. Previously, many of these needs have been disregarded. A purpose of the
PoC was to gain a better understanding of these needs and the potential gain of
creating an automated maintenance planner based on constraint programming
techniques.

The PoC was developed with limited resources, but the testers at the Scania
Transport Laboratory were tolerant and put up with the initially buggy planner
and gave back precious feedback on how to develop it further. This way of
working is fine when, as in this case, the test group is a small group of users
belonging to a subsidiary company. However, it would not be feasible for a test
on a larger scale. We learned that, even with a primitive maintenance planner
such as this PoC, the maintenance costs can be significantly reduced and user
preferences that previously were ignored now can be regarded.

The PoC maintenance planner showed us that a planner based on constraint
programming techniques is a good way to go. Constraint programming is a good
framework for expressing and solving combinatorial problems for which human
capabilities are not sufficient to cope with. The maintenance planning prob-
lem, as it has been formulated so far, has not been very constrained and had
more characteristics in common with a search problem. However, if more user
constraints are added, the planning problem may well prove to move from a
problem with a dense distribution of solutions to one where they are sparse.
Then the benefit of constraint programming may become even greater.

For example, we may want to consider when and where there is a workshop
that can perform maintenance on a vehicle. This may make it necessary to
extend the planning to multiple vehicles. Also the fleet planner may have its
requirements on where the vehicles must be at given times and how far and fast
they can travel.

Methods for estimating the remaining useful life of components to create pre-
dictive models for maintenance is currently under investigation at Scania. The
maintenance interval of a component would then change dynamically, which
could affect the stability of maintenance plans. This may not be a desired be-
havior of the planner and therefore the maintenance planner must support con-
straints regulating how an existing plan may change when new input arrives.

For all these possible extensions to the maintenance planning problem, a
solution based on constraint programming appears the most promising.

9 Acknowledgments

This work has been funded by Scania CV AB and the Vinnova program for
Strategic Vehicle Research and Innovation (FFI).

References

Tan K Jennions et. al. Integrated Vehicle Health Management: Perspectives
on an Emerging Field. Ed. by Ian K Jennions. SAE, 2011.

J. Christopher Beck and Philippe Refalo. “A Hybrid Approach to Schedul-
ing with Earliness and Tardiness Costs”. In: Annals OR 118.1-4 (2003),
pp- 49-71.

Mats Carlsson, Greger Ottosson, and Bjorn Carlson. “An open-ended finite
domain constraint solver”. In: Programming Languages: Implementations,
Logics, and Programs. Ed. by Hugh Glaser, Pieter Hartel, and Herbert
Kuchen. Vol. 1292. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1997, pp. 191-206.

Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. “Confidence-based
Work Stealing in Parallel Constraint Programming”. In: Fifteenth Interna-
tional Conference on Principles and Practice of Constraint Programming.
Ed. by Tan Gent. Vol. 5732. Lecture Notes in Computer Science. Lisbon,
Portugal: Springer-Verlag, Sept. 2009, pp. 226—241.

Tom Creemers et al. “Constraint-Based Maintenance Scheduling on an
Electric Power-Distribution Network”. In: Proc.of the Third International
Conference on the Practical Application of Prolog. Paris, 1995, pp. 135—
144.

Safaai Deris, Sigeru Omatu, and Hiroshi Ohta. “Timetable planning us-
ing the constraint-based reasoning”. In: Computers & Operations Research
27.9 (2000), pp. 819 —840. 1SSN: 0305-0548.

Jon Dunsdon and Mark Harrington. “The Application of Open System
Architecture for Condition Based Maintenance to Complete IVHM”. In:
GE Aviation.

Sami Gabteni and Mattias Gronkvist. “Combining column generation and
constraint programming to solve the tail assignment problem”. In: Annals
OR 171.1 (2009), pp. 61-76.

MiniZinc organization. MiniZinc Challenge. Apr. 2013. URL: http://www.
minizinc.org/.

José Palma et al. “Scheduling of maintenance work: A constraint-based
approach”. In: Ezpert Syst. Appl. 37.4 (Apr. 2010), pp. 2963-2973. ISSN:
0957-4174.

Scania CV. Scania Fized Price Repair programme extended. Apr. 2013.
URL: http://www . scania . co . uk/about - scania /media/ press -
releases/2009/fixed-price-repair-programme-extended.aspx.
Scania CV. Scania Repair & Maintenance contract. Apr. 2013. URL: http:
//www.scania.com/products-services/services/workshop-services/
repair-maintenance-contract/.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and
Programming with Gecode. 2010. URL: http://www.gecode . org/doc-
latest/MPG.pdf.

SICStus Prolog User’s Manual. Intelligent Systems Laboratory, Swedish
Institute of Computer Science. 2013.

[15] Peter J. Stuckey, Ralph Becket, and Julien Fischer. “Philosophy of the
MiniZinc challenge”. In: Constraints 15.3 (July 2010), pp. 307-316. ISSN:
1383-7133.

