
Indexing Rules in Rule Sets for Fast Classification

Tony Lindgren
Department of Computer and Systems Sciences

Stockholm University
Borgarfjordsgatan 12

164 40, Kista, Sweden
tony@dsv.su.se

ABSTRACT
Using sets of rules for classification of examples usually in-
volves checking a number of conditions to see if they hold or
not. If the rule set is large the time to make the classifica-
tion can be lengthy. In this paper we propose an indexing
algorithm to decrease the classification time when dealing
with large rule sets. Unordered rule sets have a high time
complexity when conducting classification; we hence con-
duct experiments comparing our novel indexing algorithm
with the standard way of classifying ensembles of unordered
rule sets. The result of the experiment shows decreased clas-
sification times for the novel method that are ranging from
0.6 to 0.8 of that of the standard approach averaged over all
experimental datasets. This time gain is obtained while re-
taining an accuracy ranging from 0.84 to 0.99 with regard to
the standard classification method. The index bit size used
with the indexing algorithm influence both the classification
accuracy and time needed for conducting the classification
task.

CCS Concepts
•Theory of computation → Approximation algorithms
analysis; •Computing methodologies → Rule learning;
Ensemble methods; •Information systems→ Expert sys-
tems;

1. INTRODUCTION
Unordered rule sets are a set R of rules were each rule has

the form of ri = if c1...cn then Classc∈C where ri ∈ R de-
notes the i:th rule of the rule set with conditions 1 to n which
predicts a class c from the set of classes C. When classify-
ing with unordered rule sets all rules have to be checked and
typically a (possibly weighted) voting scheme are eventually
used for deciding the class.

When using ordered rule sets or decision lists which are
read top-down and the first rule which have all conditions
fulfilled are used for classification purposes, see [1]. The last
rule of such an ordering often contains the default rule which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICAIR and CACRE ’16, July 13 - 15, 2016, Kitakyushu, Japan
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4235-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2952744.2952750

predict a whole (default) class. This gives a more compact
representation compared to unordered rule sets, and as a
consequence ordered rule sets are significantly faster when
used for classifying as the number of conditions to check is
much less than when using unordered rule set.

To illustrate this consider a decision list for a binary de-
cision problem with 5 rules that predict the positive class
and 1 default rule, which predict the negative class. Con-
sider also a similar unordered rule set with 5 positive rules
and 5 negative rules. Let’s say that in the dataset we want
to classify both classes are equally common. Assume that
when classifying the positive class on average there is a need
to check the conditions on half of the rules, i.e. 2.5 rules for
the positive class. For the negative class we always have to
check 5 rules. If we were to classify 100 examples we then
need to investigate for 2.5*50 + 5*50 = 375 rules.

Depending on the inducing algorithm the conditions of
the unordered rule sets could involve more conditions than
that of ordered rules, as the rules need to be able to stand
on their own. When considering the above case with an
unordered rule set we have to investigate all rules for all
examples, giving 10*100 = 1000 rules, with possibly more
conditions in each rule.

Given this extra complexity, what are the benefits of un-
ordered rule set compared to using ordered rule set? The
answer comes in two flavors one which is interpretability,
with unordered rule sets each rule stands on its own mean-
ing that no extra information is needed for interpreting it.
Considering rules in decision lists which are dependent on
their ordering most evidently is this true for the default rule
which motivates its prediction by all previous failed which is
not that informative, when trying to interpret/understand
the reasons behind a classification.

The second flavor is more expressiveness and better clas-
sification power, see [2, 3]. The downside is that one has to
handle possible clashes between unordered rules, this can be
done in a verity of ways see for example [4,5], but the stan-
dard way is to use voting. For a thorough in-depth book
about rule learning [6] is recommended reading.

Recent interest [7–9] in working with data streams high-
light different needs for methods to detect changes and quickly
adapt the decision model, the speed of classification is also
stressed as an important characteristic. The algorithm pre-
sented in this paper address this last issue and might hence
prove useful when working with data streams.

In this paper we introduce an indexing method with the
aim of improving the classification speed of rule sets while
retaining the rules interpretability. One setting which suffers



from long classification times is large ensembles of unordered
rule sets. So using this setting we conduct experiments to
compare standard way of doing classification with our pro-
posed indexing method. We also look at theoretical prop-
erties of our method and analyze how they align with the
empirical results.

The paper is organized in the following way: the next sec-
tion will discuss related work then we will in detail explain
the indexing method and reason about its properties; the
experimental set-up and the empirical results are then pre-
sented and discussed and finally conclusion and pointers to
future work is given.

2. RELATED WORK
Spatial databases, i.e. databases that are concerned with

objects and their geometrical interrelations, have developed
efficient indexing methods for checking whether two object
are inside an area of interest etc. One type of such an
index is R-tree, in the work by Zhang et al. [8] which is
aimed for fast prediction of ensemble models they create
their own index method called E-tree that builds upon R-
Tree. Another similar type of method is Redundant Bit
Vectors (RBVs) presented in [10] which aims at solving the
problem of search/matching in high dimensions, in their case
they are interested in finding an item in a database that is
similar to a query. In contrast to both of these methods
our suggested method do not have a separate data structure
that needs to be maintained and queried when used, like an
index-tree. In our case each rule and example with its condi-
tions and values are assigned a bit vector and are after that
“stand-alone” just as in the standard unordered rule setting.

The usage of bit vectors for speeding up classification has
been proposed for various machine learning methods. In
the work of [11] the authors propose a method for discov-
ery of association rules. The task they look at is mining
association rules between items in a database of sales trans-
actions. These association rules describe the relationship of
items that are frequently sold together. They present two
novel algorithms for calculating support of frequent item
sets, which both use bit vectors and their finding is that
one of the novel algorithms dominate the other algorithms
in their evaluation (including a standard algorithm not us-
ing bit vectors) both when considering speed and memory
needs. In their approach they use bit vectors for indicating
whether or not an a item is present in an item set by setting
the bit to 1 for that particular bit that represent that item.
Their bit vector representation is similar to our representa-
tion on a general level but as they are address a whole other
problem the approaches differs in the way the bit vectors are
utilized.

There are two major approaches for learning classifier sys-
tem (LCS) which consist of binary rules that are altered by
genetic algorithms for finding the best rules for a particular
dataset. In Michigan-style setting one rule set is maintained
in contrast to the Pittsburgh-type which maintain a popula-
tion of separate rule sets, in the former two types of fitness
functions are used; either accuracy-based (XCS) or strength
based (ZCS). In the paper of [12] which provide methods for
“...efficient condition encoding and fast rule matching strate-
gies using vector instructions”, which can be seen as an aim
that our method indeed also wants to fulfill, the authors ex-
periment with the XCS matching process with and without
the use of bit vector indexes. The former performs the same

task beyond ninety times faster than the latter. In their pa-
per they do experiments on two different types of processors
(CPU:s) with different instructions sets, Altivec and SSE2
respectively and the focus of their work is to speed up the
construction of the final rule set and the usage of it, in our
setting we are only interested in the latter. In their setting
they only consider categorical values in their examples while
we on the other hand only consider examples which have nu-
merical inputs. It should be mentioned that our presented
algorithm easily can be modified to handle categorical val-
ues.

3. INDEXING
The indexing method we propose is not used for creat-

ing rules but as a post processing step before the usage of
the rules. This transformation step must also be done for
unknown examples which will be classified by the indexed
rules.

The following example will illustrate the steps of the in-
dexing process; first all training examples that have been
used to build the rule set are analyzed and for each attribute
its minimum and maximum value are identified. These val-
ues then serve as boundaries where it is assumed, using
closed world assumption, that the values for the attribute
will vary in-between. Note however that these boundaries
do not hinder the method to handle values that fall outside
this region when for example doing classifying. The method
takes as an input parameter the size of the index vector to
use, if this is 8 bits and an example has four input variables
then the total index vector size for an example in this setting
is 8 ∗ 4 = 24 bits.

Let’s assume that the min and max value for attribute1
is 3.2 and 7.9 respectively. These values are arranged so
that the left-most bit of the bit vector stands for the value
3.2 and the right-most for 7.9. The difference between the
boundaries is 4.7, 7.9− 3.2 = 4.7, this value is divided over
the 8 bits in a linear fashion, leaving a coverage of 4.7/8 =
0.5875, for each bit.

The values for each bit in this particular vector size and
attribute are (from left to right): 3.2 − 3.7875 − 4.375 −
4.9625 − 5.55 − 6.1375 − 6.725 − 7.3125 − 7.9. Values for
examples are encoded by its corresponding bit vector by
inferencing which bit of the bit vector in question that should
be set to 1 and the rest of the bits are set to 0. In the
left figure of Figure 1 an example and its corresponding bit
vector is shown, the first value of the example is 6. This
would then result in the following bit vector [0,0,0,0,1,0,0,0],
as 6 is between 5.55 and 6.1375.

Finally rules are encoded as bit vectors in similar fash-
ion to the examples, but the difference is that rules do not
have point values but intervals. In a setting with numerical
attributes the conditions of a rule is either less than < or
greater than or equal >=. If a rule has a condition that if
attribute A1 is above or equal >= to 6 then the class Pos
is predicted. The encoding of such a rule will correspond to
the rule and bit vector shown in the right most part of the
Figure 1.

The algorithm for indexing examples is described in more
detail in Algorithm 1, for indexing rules the algorithm is
similar but with small differences in the inner for-loop, when
indexing examples only one bit is set to 1 and the rest to 0,
when creating an index for rules more than one bit can be
assigned the value 1. Input to the algorithm is the example



(a) Corresponding bit
vector for the first at-
tribute of an example

(b) Corresponding bit
vector for a rule with one
condition

Figure 1: Example of bit vectors

that is to be indexed, the size of the bit vector and a list of
the minimum- and maximum-value of each attribute. Re-
turned from the algorithm is a bit vector corresponding to
the example.

The algorithm iterates over all attributes, and for each
attribute it uses the function getPrec which uses the bit
size and the attributes minimum and maximum values list
to initialize the precision and set the minimum and maxi-
mum values for the particular attribute. A left and right
bound are set, these act as a sliding window if the examples
value fall in-between of these values, then that particular
bit should be set to 1. An inner-loop which iterates as many
times as the bit size uses the left- and right-bound to add
bits, 1 or 0, to the bit vector. When the inner-loop is fin-
ished the final bit vector is added to the indexed example,
the outer-loop is continued until all attributes has been cov-
ered, and finally the indexed example is returned.

Algorithm 1 Indexing example

Inputs: Example,BitS,AttsMinMax
Outputs: IndexedExample

Atts← all attributes in Ex
for ai ∈ Atts do

Preci,Mini,Maxi ← getPrec(BitS,AttMinMax, ai)
LeftBound = Mini

RightBound = Mini + Preci
BitV ector = 0
for each bit to BitS do

if LeftBound =< ai

∧
RightBound > ai then

BitV ector ← BitV ector + 1
else

BitV ector ← BitV ector + 0
end if
BitV ector << 1 ⊲ Shift one position
LeftBound← RightBound
RightBound← RightBound+ Preci

end for
IndexedExample← IndexedExample∪ BitV ector

end for
return IndexedExample

Before using a rule set for prediction purposes all its rules
must be converted to index format. When predicting an
unknown example it also must converted to an index format
as described above. Then each rule is tested if its conditions
are fulfilled by using the rules bit vector and the example
bit vector, BitV ecRule∧BitV ecEx followed by the popcount
function which returns the number bits that are set to one.
This number is then checked with the number of conditions

that the rule has, if they are equal all conditions of the rule
has been fulfilled and the rule are used for predicting the
class of the unknown example.

3.1 Expected benefits from using the indexing
method

How much faster will a prediction utilizing the indexing
method be compared to using ordinary classification? In
the next section we will present the experimental setup and
the empirical results, but before this we will reason about
the expected performance gains. Using indexing each rule is
classified by two functions and one comparison, ⊕, popcount
and =. So the time for classification is constant no matter
the number of conditions in a rule, the only parameter that
affects the speed of classification in the index case is the
size of the bit vector used, as this affect the time of the two
functions to calculate a result. The size of the bit vector
will also influence of how well the method can represent the
original rules and examples. If the size is low, the coarser the
index view, which would probably result in a representation
which might not capture the rules and examples adequately.
Having made these observations one can make the following
predictions about the effectiveness of indexing compared to
the standard method:

• A high number of conditions per rule is probably ad-
vantageous for our indexing method compared to the
standard method

• A small bit vector size will probably result in low pre-
diction times, but not necessarily correct predictions

In the experimental section that follows we will adjust the
latter as a parameter and measure the former for each dataset,
to see if our intuition holds empirically.

4. EXPERIMENT
The two prediction methods, indexing and the standard

method, was evaluated in a 10-fold cross validation scheme.
The ensemble size was set to 1000, i.e. we induce 1000 rule
sets. The ensemble strategy was that of bagging [13] thus
creating a new training set for each of the 1000 rule sets by
sampling examples with replacement.

Two datasets contained missing values in the case of breast
cancer Wisconsin 16 missing values was replaced by the
value 1, in the case of Cleveland heart disease all missing
values was replace by 0.0. Different sizes of bit vectors was
used for the indexing method, ranging from: 4, 8, 16, 32,
64, 128 to 256 bits.

From the experiments the average accuracy and average
classification time (in milliseconds) over the 10 folds was



Table 1: Average accuracy

Dataset No. rules No. cond Ensemble i-4 bits i-16 bits i-64 bits i-128 bits i-256 bits
Br. c. wisc. 8682.0 10686.9 95.9, 17066 95.1, 9703 96.0, 10313 95.9, 10486 95.9, 11029 93.4, 11684

Bupa 22127.5 59770.8 73.3, 17175 58.3, 10764 65.2, 9936 73.0, 9688 74.8, 9922 72.5, 10547
Clev. h. dis. 29868.1 83939.4 56.3, 23431 57.3, 11560 53.3, 12356 58.7, 11653 59.3, 12448 59.7, 13868

Glass 4464.5 3578.3 92.7, 1701 93.6, 906 92.7, 1017 91.8, 1091 91.8, 1186 92.7, 1293
Haberman 29564.3 75417.4 69.3, 18284 72.9, 10653 72.2, 9782 68.6, 10734 68.6, 10813 68.3, 11029
Image seg. 10840.8 18543.7 81.3, 9594 37.0, 6192 62.7, 5475 77.5, 5445 80.9, 5852 80.4, 6660
Ionosphere 7916.7 11875.4 90.1, 8190 86.9, 4603 88.9, 4929 91.4, 5400 90.6, 6316 90.6, 8625

Iris 4497.5 4374.1 93.3, 2417 55.3, 1374 91.3, 1467 94.0, 1543 92.7, 1576 92.7, 1622
Pen digits 58224.0 205478.2 96.2, 1205513 82.6, 230180 96.0, 237948 83.0, 332405 83.2, 337727 83.2, 365323
Pima ind. 32456.8 101371.5 74.6, 44540 74.5, 3805 75.9, 6367 76.7, 8751 75.9, 9268 75.4, 9344
Sonar 7423.5 11396.9 82.7, 4461 74.5, 3057 80.8, 2978 84.1, 3635 83.7, 4851 84.1, 6926

Spec. flare 10179.6 18911.4 85.7, 9874 51.9, 5758 82.5, 6067 84.2, 7005 86.0, 8720 86.2, 12106
Thyroid 5634.0 6593.3 94.4, 4414 70.2, 2731 80.5, 2776 91.2, 2636 92.56, 2649 94.4, 2839
Wine 4760.8 5051.8 96.1, 3167 93.3, 1734 95.5, 1903 94.9, 2027 95.5, 2215 96.1, 2511

Fr. rank acc. - - 2.79 5.07 3.93 3.25 2.96 3.0
P value 0.01015

Fr. rank time - - 1.29 5.21 4.86 4.50 3.29 1.86
P value 2.74E-10

measured. The total number of conditions and total num-
ber of rules generated was also collected for each dataset. In
total 15 datasets was used in the experiment, all taken from
the University of California Irvine (UCI) Machine Learn-
ing Repository [14]. The 15 datasets ranged from a size of
150 to 7494 instances and the number of attributes ranged
from 3 to 34 attributes excluding the class label. The algo-
rithms was implemented with SWI-Prolog, and are available
to downloaded from http://dsv.su.se/∼tony/programs.html
together with the data sets.

4.1 Experimental results
Overall the results from the experiment follow the ex-

pected pattern. Typically the accuracy and time do increase
with larger index sizes, as expected. In Table 1 the measured
values are presented, the first column contains the names of
the datasets, the second column contains the averaged total
number of rules over the ten folds, the thirds column present
the averaged total number of conditions over the ten folds,
the fourth column displays the average accuracy and clas-
sification time (in milliseconds) for the original ensemble in
the following columns the accuracies and classification times
for index sizes 4 to 256 is shown. Note that index size 8 and
32 has been omitted in the table due to lack of space. Also
note that the average total number of conditions is lower
than the averaged total number of rules in the Glass and
Iris dataset. This odd observation has a perfectly good ex-
planation, if the rule set contains only a few rules and each
rule only utilizes a few conditions then this causes the aver-
aged total number of conditions to become lower than the
average total number of rules, as when inducing each rule set
we usually end up with a rule with no conditions, which is
the last induced rule which in turn covers the last examples
(5 examples in our case).

Following the significance test procedure of [15]1, we first
apply the Friedman test, the ranking is shown in Table 1 in
the row with Fr. rank acc in the first column. Here we see
how the accuracy is ranked, not surprisingly the ensemble
is ranked best then comes index-128, index-256, index-64,
index-16 and index-4. The p-value of the test is: 0.001015,

1The statistical test are performed with the software that
can be found at: http://sci2s.ugr.es/keel/multipleTest.zip.

which indicate that we indeed have statistical significant dif-
ferences between the methods.

We then rank the methods with regard to time, in the
row below, here the lower value the faster classification, the
ranking is as follows, index-4, index-16, index-64, index-128,
index-256 and the ensemble. This is as expected as the time
needed for classifying with the ensemble and index-256 is
followed by shorter index values in the expected order. This
ranking has a p-value of: 2.74E-10 which shows that we
have a statistical significant difference between the methods.
Using Bergmann’s procedure we can for the accuracies reject
the null hypotheses in the following cases:

• Ensemble vs. index-4

• index-4 vs. index-128

• index-4 vs. index-256

Which indicate that the accuracy for the index-4 method
performs statistically worse than the ensemble and index-
128 and index-256.

Using the same test but focusing on classifying time we
can reject the null hypothesis in the following cases:

• Ensemble vs. index-4

• Ensemble vs. index-16

• Ensemble vs. index-64

• Ensemble vs. index-128

• index-4 vs. index-128

• index-4 vs. index-256

• index-16 vs. index-256

• index-64 vs. index-256

Hence all indexing methods except index-256 are statisti-
cally significantly faster than the ensemble method. Us-
ing this knowledge together with the statistical significance
test of accuracies we can conclude that the best choice of
method would be any indexing method with bit sizes from



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 50  100  150  200  250

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
tim

e 
an

d 
av

er
ag

e 
ac

cu
ra

cy
 w

.r
.t.

 e
ns

em
bl

e

Index size (No. bits)

Average classification time and average accuracy w.r.t. ensemble for different index sizes

Original ensemble
Average classification time

Average accuracy

Figure 2: Average classification time and average accuracy w.r.t. ensemble for different index sizes

16 to 128, then you get a classifier that is statistically sig-
nificantly faster while they cannot be separated statistically
w.r.t. classification performance measured by accuracy in
this case. Using the Friedman rank of accuracy, index-128
is the best choice.

In Figure 2 we have used the ensemble to normalize the
index values against both in terms of accuracy and time,
i.e. a value below 1 would mean lower performance than
the ensemble for accuracy, for classification time the same
value would mean a faster classification. For each index size
the average normalized values of accuracies and classifica-
tion times w.r.t. the ensemble is plotted. From the figure
it is clear that all index methods perform below the ensem-
ble in terms of accuracy. Indexes of size 4 to 64 have a
much lower accuracy than the ensemble, with larger index
sizes than 64 bits the accuracies stabilizes around 0.99 (in
comparison to the ensemble accuracy), until maximum in-
dex size of 256. The indexing classification time varies from
just below 0.6 to 0.8 compared to the ensemble classifica-
tion time and there is strong correlation with larger index
size and increased classification time. The relationship looks
almost linear, which might indicate that the functions ⊕ and
popcount has a linear complexity.

To investigate if there is a correlation between number of
conditions per rule and gain in indexing classification time
w.r.t. ensemble classification time (hence the classifications
times normalized by the ensemble), we plot the average clas-
sification time (for all indexing methods) on the Y-axis and
the number conditions divided by the number rules on the
X-axis in Figure 3.

We expect to see a negative slope in the plot. From the
figure we see that the overall trend of the plotted data do
support this hypothesis, but there are quite a few “bumps”
in the figure. So from this figure the we can indeed draw the
conclusion that our hypothesis is still valid.

5. DISCUSSION, CONCLUSIONS AND FU-
TURE WORK

Unordered rule sets have traits that are to their advantage
comparing with ordered rule sets, as better interpretability
and higher prediction accuracy, but one downside is that un-
ordered rule sets have a higher time complexity when clas-
sifying examples. This is becuse each rule in a rule set must
be tested when classifying one example. In this paper we
suggest an indexing method for speeding up classification
when using unordered rule sets.

The classifying accuracies for our indexing method were
on average slightly lower than that of the original ensemble,
0.991 accuracy compared to that of the ensemble, using the
indexing method with 128 bits which was the best perform-
ing indexing method size. This method has classifying time
which is 0.679 than that of the ensemble, so if time is more
important than the final accuracy our proposed method is
right for the job.

As the indexing size do have a big impact on both the
classification times and predictive performance when con-
sidering using this technique this is something to take into
consideration. For practical purposes manually tuning the
correct index size to the problem at hand is advised. To
automate this task could be something to investigate in the
future.

Another issue that could well be worth investigating in
the future is how to select thresholds between the bits of
a bit vector. The linear method presented in this paper
could probably be improved upon. One possible alternative
solution would be to select the boundaries between bits of
a bit vector by inspecting the densities of certain regions.
Dense regions would probably benefit from having more bits
than sparse regions. This basic observation could be further
elaborated if one also takes class labels into account.



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  1  1.5  2  2.5  3  3.5  4

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
tim

e

No. Conds / No. Rules

Influence of conditions per rule on average classification time w.r.t ensemble classification time

Influence

Figure 3: Influence of No. Conditions / No. Rules on average classification time

Acknowledgments
This work has been funded by Scania CV AB and the Vin-
nova program for Strategic Vehicle Research and Innovation
(FFI)-Transport Efficiency.

6. REFERENCES
[1] Ronald L. Rivest. Learning decision lists. Machine

Learning, 2(3):229–246, 1987.

[2] Peter Clark and Robin Boswell. Rule induction with
CN2: some recent improvements. In Machine Learning
- EWSL-91, European Working Session on Learning,
Porto, Portugal, March 6-8, 1991, Proceedings, pages
151–163, 1991.

[3] Henrik Boström. Maximizing the area under the ROC
curve with decision lists and rule sets. In Proceedings
of the Seventh SIAM International Conference on
Data Mining, pages 27–34, 2007.

[4] Tony Lindgren and Henrik Boström. Resolving rule
conflicts with double induction. Intell. Data Anal.,
8(5):457–468, 2004.

[5] Tony Lindgren. On handling conflicts between rules
with numerical features. In Proceedings of the 2006
ACM Symposium on Applied Computing (SAC),
Dijon, France, April 23-27, 2006, pages 37–41, 2006.

[6] Johannes Fürnkranz, Dragan Gamberger, and Nada
Lavrac. Foundations of Rule Learning. Cognitive
Technologies. Springer, 2012.

[7] João Gama and Petr Kosina. Learning decision rules
from data streams. In IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pages 1255–1260, 2011.

[8] Peng Zhang, Jun Li, Peng Wang, Byron J. Gao,
Xingquan Zhu, and Li Guo. Enabling fast prediction

for ensemble models on data streams. In Proceedings
of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’11,
pages 177–185, New York, NY, USA, 2011. ACM.

[9] Petr Kosina and João Gama. Very fast decision rules
for classification in data streams. Data Min. Knowl.
Discov., 29(1):168–202, 2015.

[10] Jonathan Goldstein, John C. Platt, and Christopher
J. C. Burges. Redundant bit vectors for quickly
searching high-dimensional regions. In Joab Winkler,
Mahesan Niranjan, and Neil D. Lawrence, editors,
Deterministic and Statistical Methods in Machine
Learning, volume 3635 of Lecture Notes in Computer
Science, pages 137–158. Springer, 2004.

[11] Georges Gardarin, Philippe Pucheral, and Fei Wu.
Bitmap based algorithms for mining association rules.
In 14ème Journées Bases de Données Avancées, 26-30
octobre 1998, Hammamet, Tunisie (Informal
Proceedings)., 1998.

[12] Xavier Llorà and Kumara Sastry. Fast rule matching
for learning classifier systems via vector instructions.
In Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’06,
pages 1513–1520, New York, NY, USA, 2006. ACM.

[13] Leo Breiman. Bagging predictors. Mach. Learn.,
24(2):123–140, August 1996.

[14] M. Lichman. UCI machine learning repository, 2013.

[15] Salvador Garćıa and Francisco Herrera. An extension
on ”statistical comparisons of classifiers over multiple
data sets” for all pairwise comparisons. Journal of
Machine Learning Research, 9:2677–2694, 2008.


