

Abstract—Ensembles of classifiers has proven itself to be

among the best methods for creating highly accurate prediction

models. In this paper we combine the random coverage method

which facilitates additional diversity when inducing rules using

the covering algorithm, with the random subspace selection

method which has been used successfully by for example the

random forest algorithm. We compare three different covering

methods with the random forest algorithm; 1st using random

subspace selection and random covering; 2nd using bagging and

random subspace selection and 3rd using bagging, random

subspace selection and random covering. The results show that

all three covering algorithms do perform better than the random

forest algorithm. The covering algorithm using random

subspace selection and random covering performs best of all

methods. The results are not significant according to adjusted

p-values but for the unadjusted p-value, indicating that the

novel method introduced in this paper warrants further

attention.

Index Terms—Ensemble of classifiers, random covering,

random subspace selection, diversity.

I. INTRODUCTION

Induction of rules are a formidable way of creating

prediction models, the rules induced are easy to interpret and

usually have a good predictive power [1]. When using

ensemble methods, it is enough to have an inductive algorithm

that have a predictive power better than random and able to

create diverse models to create a powerful predictive

ensemble using unweighted majority vote of all models that is

part of the ensemble, for details see [2]. When considering

ensemble of classifiers, it is clear that it is not the strength of

each individual learner that determines the overall

performance but rather the combination of individual learners,

their diversity and the number of learners used in the

ensemble. These three factors can be manipulated for

improving ensembles. In this paper we mainly focus on how

we can facilitate diversity in the inductive algorithm used. We

present a modified rule induction method based on the

covering algorithm. The method we introduce in this paper

has its origins in the algorithm presented here [3], where we

first introduced random coverage of examples, i.e. the amount

of examples not remove when creating a rule, which is user

defined via a hyperparameter.

The paper starts with a review of the existing work on key

Manuscript received October 6, 2017; January 8, 2018. This work has

been funded by Scania CV AB and the Vinnova program for Strategic

Vehicle Research and Innovation (FFI)-Transport Efficiency.

Tony Lindgren is with the Department of Computer and Systems

Sciences at Stockholm University, Nodhuset, Borgarfjordsgatan 12, S-164

07 Kista, Sweden (e-mail: tony@dsv.su.se).

factors for ensembles. After that we will present our proposed

method for random rule set induction and relate our method to

the key factors introduced earlier. We will then present the

experimental setting were we will compare our novel method,

in different settings, with an established method, in this case

the random forest algorithm. We then present the results of the

experiment and finish off the paper with a discussion and

reason about possible future work.

II. KEY FACTORS IN ENSEMBLE LEARNING

As mentioned in the introduction there exists different

factors that can be identified and adjusted to improve the

performance of the ensemble as a whole. Below we will look

at these factors in isolation but also discuss how they relate

and influence each other.

But before we delve into these matter we first define our

setting and what we mean by an ensemble. Here we follow the

definitions presented by [4]. In the standard supervised

learning setting, where supervised refers to that each example

in the training set has an associated class or a numerical value.

In the former setting we have a classification problem and in

the latter we have a regression problem. In our case we will

only consider classification problems. The training examples

have the form (x1, y1),…,(xm, ym) were y = f(x) is an unknown

function that we are aiming to learn. When performing

classification, one typical setting is the binary classification

problem, where y {pos, neg}, we will refer to this set of

classes as C, note that C is not restricted to contain only two

class labels. The example xi is typically a vector xi,1, xi,2, …,

xi,n, were the components can be of different types, all

describing some properties, or features, of the example. The

data type could either be a categorical value, i.e. xi,j {red,

green blue}, or a numerical value of some sort, i.e. xi,j {ℝ,

ℤ,...}.

These are the most common data types but data can come in

other shapes, for example as histograms, i.e. where

components of the vector are them self a vector or a matrix,

these types of data is rather unusual but if one is interested in

utilizing these sub-structures, special algorithms can be used

that consider the histogram structure while learning the

function y, see for example [5].

In our notation xi,j j refer to the example and i to a feature,

hence the a combination of i,j will point out a feature for a

particular training example. The set of labeled training

examples we denote X. A classification learning setting thus

involves X which are input to a learning algorithm which in

turn produces a classifier, consisting of a hypothesis h about

the function y = f(x). In an ensemble setting we will have S as

input to one or more (hyperparameter ensemble size) learners

Random Rule Sets – Combining Random Covering with

the Random Subspace Method

Tony Lindgren

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

8doi: 10.18178/ijmlc.2018.8.1.655

which will produce classifiers denoted by h1, …, hS. One of

the key issues for ensembles is how to combine the hypothesis

hi into one classifier. How this has been done previously, is

what we will look at now.

A. Voting Scheme

An ensemble is constructed by a training set X and by

setting an ensemble size hyperperameter to S we will

construct S hypothesis, h1, …, hS, (also referred to as models

or classifiers). As mentioned earlier these hypotheses must be

diverse, we will get into this issue in detail later on, so for now

let us use an intuitive description of diversity with the

meaning that we want different classifiers to make different

faults. The algorithm used to create a hypothesis can have

different types of outputs given what algorithm has been used.

According to [6] there exist different levels of output from the

classifiers (or hypothesis):

1) oracle: Given a x to classify and a classifier hi we get the

result of the prediction as right or wrong.

,

1, if ()

0,otherwise

i j

i j

h x y
y

2) abstract: Given a x to classify and a classifier hi we get

the result of the prediction as a class label c C.

3) rank: Given a x to classify and a classier hi we get the

result of the prediction as alternative class labels ranked

according to their plausibility, c C.

4) measurement: Given a x to classify and a classier hi we

get the result of the prediction as the probabilities for

each class label c C.

Given these different types of outputs from the classifiers, we

can identify different methods for combining the classifiers.

Majority voting is one of the most common method for

combining classifiers.

)(max)(
1

,1

1

, XdXd
S

i

ji

c

j

S

i

ci maj

Here S is (as earlier) the number of classifiers we use in the

ensemble. Majority voting acts on the output labels from the

classifiers, hence it operates on the abstract level, di,j is either

0 or 1 depending if the classifier i outputs j or not. The

ensemble chooses cmaj to be the class which receive the largest

vote and hence outputs this as a prediction for example x. For

a thorough an in-depth analysis of majority voting, see [7]. By

utilizing some measure of quality of classifiers, weights can

be added to the voting scheme to create a weighted majority

voting scheme, it has been shown [8], that the optimal weights

are set is to use the follow equation:

i

i

i
acc

acc
w

1
log

where acci is the accuracy for the i:th classifier. An obvious

note here is that the accuracies should be calculated from data

not used when building the classifiers. The equation for

weighted voting is:

)(max)(
1

,1

1

, XdwXdw
S

i

jii

c

j

S

i

cii maj

Stacking [9] is one method that utilizes meta-information

from the base classifiers to train a model for combining the

classifiers. It is apart from the different voting methods one of

the most common method for combining different base

learners. Other methods exist, for example one could simply

sum all fired rules coverages, i.e. the number of covered

training examples, and use the most frequent class as the

prediction. This would correspond to a method on rank-level.

B. Ensemble Size

In Condorcet‟s jury theorem [10] he claims that, adding

more members to the jury will increase the probability that the

majority‟s decision is correct. This claim is valid given a few

assumptions, each member of the jury should vote better than

random, that they vote independently of each other and that

the group of jury members face a decision problem, with an

outcome that is either correct or incorrect. This theorem will

when the jury size n inf, pn 1 where p is the probability

for voting correct. This theorem has later been extended to

ensemble learning where jury member is swapped for

classifiers and the outcome prediction of classes given an

unseen example, see [2], [11].

Even though it has been shown in theory that more voters,

or classifiers is better, there has recently been empirical

observations that the predictive performance at some point do

not gain much from added classifiers. In the work of [12] the

authors investigated how many trees is necessary when using

a random forest. They investigated 29 datasets and varied the

ensemble size using a base of two, S = 2
j
, j = 1, 2, …, 12

Hence the different ensemble sizes were: 2, 4, 8, 16, 32, 64,

128, 256, 512, 1024, 2048 and 4096. In short they came to the

conclusion that using larger number of trees than 128 is not

worthwhile.

The result from [13], [14] are not equally clear cut and they

indicate that different machine learning problems need

different ensemble sizes. Both papers investigate how to

dynamically create a dynamic stopping criteria to decide

when to stop adding more classifiers to an ensemble. In the

former paper they achieve this by investigating the out-of-bag

error of the ensemble and in the latter paper they investigate

how stable the predictions from an ensemble are and base

their decision on this information.

C. Diversity and Individual Learner

One thing that is clear, if we created an ensemble with

many identical classifiers the result would be identical to

using just one of these classifiers. For the ensemble setting to

work we need diversity. The article [13] is recommended for

an in-depth investigation of different measures of diversity,

here we will discuss diversity more informally.

From our initial observation that identical classifiers are

not diverse we now Investigate different methods that have

been used for facilitating diversity, the different methods can

be classified as below:

1) use different base classifiers

2) use different feature sets

3) use different data subsets

We will now give examples of methods that facilitate

diversity for each category, we will not try to define the

meaning of diversity other than that these different examples

will hopefully give a better intuitive understanding of the

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

9

concept. A paper that discusses these categories and more

in-depth is [15].

1) Different base classifiers

Using different base classifiers with the same data is a

perfectly good way of creating ensembles, it is of course hard

to know in advance how, for example an SVM model will be

behave differently from a decision tree. Hence different

learning algorithms will give rise to different models, the

error of the models can be decomposed into their bias and

variance. Where bias measures how far of the model are from

the correct value and variance measures how predictions for a

given example varies with different realizations of the model

(different dataset used for creating the model). The error of a

model for a regression problem can be defined as follows:

Err(x) = (E[h(x) – y])
2
 + E [h(x)-E[h(x)])

2
]+e

2

Err(x) = Bias
2
+ Variance + IrreducibleError

Above we follow the definitions of [16]. Pedro Domingos

provide a unified bias-variance decomposition for the 1-0 loss

and squared loss function to be used in the classification

setting in [17], he also conducted experiments where he

compared Decision Tree (C4.5), AdaBoost (with decision

trees) and K-Nearest Neighbor. In this work Domingo‟s also

put forward a hypothesis '...that higher-variance algorithms

(or settings) may be better suited to classification (zero-one

loss) than regression (squared loss)'. Using knowledge about

different learning algorithms and/or impact of

hyperparameters settings on the final model is a viable way of

creating ensembles. But this tack has, as of yet, not been a

popular way of creating ensembles.

2) Different feature sets

The random subspace method [18] which aims at creating

diverse models by selecting the best feature from a randomly

selected subset of features. In their paper they use the random

subspace method for constructing a decision forest (ensemble)

consisting of decision trees but the general method can and

have been applied to other learners as well see [19, 20]. The

algorithm for random subspace is shown in Algorithm 1. Input

to the algorithm is the training examples (X), size of the

ensemble (S), size of subspace (d) and the feature set (D). The

algorithm selects randomly selects a set of features with

replacement dset of size S. The tree induction function is then

called with this feature set dset and the training examples X

output is a model htemp which are added to the ensemble of

models H. The algorithm continues from the top until enough

models have been created.

Algorithm 1 – Random subspace method

Inputs: TrainingExamples(X), EnsembleSize(S),

FeatureSet(D), SubspaceSize(d)

Outputs: EnsembleOfModels(H)

while S ≠ do

 dset =

 while d ≠ do

 dset dset select d D with replacement

 d = d – 1

 end while

htemp InduceTree(X, dset)

H H htemp

S = S – 1

end while

return H

3) Different data subsets

The most popular methods for creating diversity is to alter

the input data in different ways. One of the more popular

methods is bagging (or bootstrap aggregating) proposed by

[21]. The methods create different training sets which in turn

are used to produce h1,…, hs models. Each dataset Xi are

created by random sampling with replacement of examples

from training examples X. Hence each training set will

probably differ from each other w.r.t. composition of

examples. When creating these bagged trainings sets it is

expected that 63.2 % of the examples are unique examples

from X and hence the rest duplicates. AdaBoost [22] is

another popular method for creating different data subsets.

Here each example has a weight wi associated with it, initially

each example has equal weights wi = 1= m where m denotes

the number of training examples. The following steps are then

repeated according to the ensemble size S.

For l 1, …, S:

1) Train learner on Xt (X with associated weights W)

2) hl: X {pos, neg} with error t

3) Choose: wt = ½ ln (1 - t / t)

4) Update:

jit

wt

jit

wt

t

t
t

yxhife

yxhife

Z

iX
iX

)(

)()(
)(1

Where Zt is a normalization factor to make sure that Xt+1 will

be a distribution. In each iteration the weights of the

erroneous predicted examples weights are increased, hence

making the learning in the next round to focus extra on these

examples.

One difference between AdaBoost and for example

bagging and the random subspace method is that it is serial in

its nature, as input from an earlier stage is needed for the next

stage, thus making it harder to parallelize the algorithm.

One of the most popular ensemble methods is random

forest [23] which combine the random subset method together

with bagging, this combination has proven very efficient and

effective.

III. USING ENSEMBLES OF RULE SETS

There has been some work in the area of utilizing rule sets

as base models for ensembles, as well as using rule set for

combining base learners. In the paper [24] by Jerzy

Stefanowski he investigates how to use three different

ensemble methods with rule induction. The three methods are

bagging, n
2
 and a stacking type of meta-learning method. He

compared the performance of the three methods on a few

common datasets and his conclusions is that the n
2

method

seems to performed best. In their paper [25] Petr Savicky and

Johannes Fürnkranz uses rule induction (ripper) as base

learner together with different combining learners in a

stacking approach. The investigate three different

meta-learning algorithms and their performance: decision tree

induction (c4.5), rule induction (ripper) and a nearest

neighbor classifier (k-nn). Their results show that the nearest

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

10

neighbor classifier sometimes did drastically improve

performance as compared to using unweighted voting on the

base classifier models while the other two methods did not.

In the paper [3], Tony Lindgren introduce a new parameter

for the covering algorithm which allows the user to specify

how many of the covered examples, by the induced rule,

which should not be removed from the set of examples to be

covered. Hence these examples must then be covered again,

which lead to diverse sets of rules. In his paper he concludes

that this modification indeed introduce diversity in rule sets.

But using the method in combination with bagging did not

improve performance, which was expected, instead it worked

best on its own. The novel method we explore in this paper

uses the new parameter in a random subset selection setting,

which we will describe in detail in the next section.

IV. NOVEL METHOD

The novel method we introduce here is a combination of

the earlier method presented in [3] and the random subspace

method [18]. The algorithm works by randomly selecting a

subset (according to a hyperparameter) of all available

features in a stepwise fashion, for each condition in a rule.

After a rule has been induced the new hyperparameter is then

used to select randomly how many of the covered examples

which should be removed from the set containing the

remaining examples to be covered (refereed here on as

random covering). The algorithm is more formally described

in Algorithm 2.

The inputs to the algorithm is the training examples (X), a

set of available features (D), size of the ensemble, i.e. number

of classifiers (S), size of subspace (d) and finally the

proportional size of examples to remove after covering (pR).

The algorithm‟s main loop makes sure that we create S

number of classifiers. The inner loop induces new rules until

all examples are covered. It does this by the function

createOneRule, which uses the current training examples (X)

and hyperparameters (D, d). The function repeatedly calls

getRandomSubSpace with D and d this function returns a set

of attributes a. The best condition which utilizes one attribute

from a according to some quality criteria are then added to the

rule being built. This process continues until the rule satisfies

the stopping criterion or there are no examples left to cover. It

then returns the covered rule (Rule) together with the set of

examples covered by the rule (CovEx). The function

exToRemove uses CovEx and pR, the function randomly

selects for each example if it should remove the example from

CoveredEx or not w.r.t. the hyperparameter pR. It then returns

the (possibly) modified CovEx set. The examples in CovEx

are then removed from the X and the inner loop is then

restarted until no X are left.

Algorithm 2 – Random rule sets

Inputs: TrainingEx(X), FeatureSet(D), EnsembleSize(L),

SubspaceSize(d), pSizeExToRemove(pR)

Outputs: EnsembleOfModels(H)

H =

while S ≠ do

 while X do

 CovEx, Rule createOneRule(X, d, D)

 ExToRemove exToRemove(CovEx, pR)

 X X \ ExToRemove

 H H Rule

end while

 S S – 1

end while

return H

function getRandomSubSpace(d, D)

dset =

while d ≠ do

 dset dset select d D with replacement

 d = d – 1

 end while

return dset

function exToRemove(CoveredEx, pToRemove)

for all examples, ex CoveredEx do

randVal randomFloat

if randVal =< pToRemove then

CoveredEx CoveredEx \ ex

end if

end for

return CoveredEx

end function

function createOneRule(X, d, D)

c //Initialize a rule with empty conditions

repeat

for all attributes, a getRandomSubSpace(d, D) do

R c = c //Use attribute a to create a condition

BestCa eval according to some quality criteria

end for

c c BestCa

Rule c

until Rule satisfies a stopping criterion X =

CoveredEx gets all examples covered by Rule

return CoveredEx, Rule

end function

V. EXPERIMENT AND RESULTS

Our empirical evaluation of the novel algorithm was set up

as follows. The experiment where conducted using a 10-fold

cross validation fashion, hence all results are the average

values from these 10 folds. Size (number of rules) and

accuracy of each algorithm was used as performance metrics.

We compared the random forest algorithm together with

unordered rule sets induced in three different ways. The first

method utilized random subspace selection together random

covering, i.e. the novel method described in Algorithm 2. The

second unordered rule induction method utilized bagging

together with random subset selection, i.e. the unordered rule

set counterpart of random forest. The third unordered rule

induction method utilized all three diversity inducing methods

at once, i.e. random subspace selection, bagging and random

covering. All compared algorithms were implemented using

SWI-Prolog, and are available to download from

http://dsv.su.se/~tony/programs.html together with the

datasets used in the experiment.

All datasets were taken from the UCI repository [26], in total

28 datasets were used. The parameters that were used was the

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

11

http://dsv.su.se/~tony/programs.html

following: ensemble size = 200, random subset size = 0.3,

minimum coverage = 10, minimum margin = 0.9, random

coverage = 0.2. The ensemble size was selected upon the

results of [10], where they claim that larger ensembles than

128 is not necessary, so we set the size to 200, just to be sure.

The random subset size of 0.3, meaning that 30% of the

attributes will be considered when inducing conditions, which

is a reasonable size. Minimum coverage and minimum margin

are both stopping criterions, where the first stops if less than

or equal to 10 examples are covered by a rule and minimum

margin specifies that the margin difference between the two

largest classes, should be 90% or larger to stop. Random

coverage of 0.2 reflect that 20% of the covered examples are

left in the training set to be covered again. The prediction of

the ensemble was done using unweighted voting.

TABLE I: THE RESULTS OF THE EXPERIMENT

Dataset
Rnd. Forest Rule1 Rule2 Rule3

Size Accuracy Size Accuracy Size Accuracy Size Accuracy

Acute Diagnosis 1 828.2 1.000 1794.2 1.000 916.2 1.000 1774.5 1.000

Acute Diagnosis 2 661.1 1.000 1531.6 1.000 752.2 1.000 1525.1 1.000

Adult 16841.7 0.760 31363.6 0.757 18530.2 0.772 1945.6 0.760

Arrhythmia 1136.5 0.629 6222.2 0.613 4210.1 0.598 5532.9 0.604

Balance scale 17988.8 0.805 13569.5 0.856 8602.7 0.872 11819.1 0.880

Breast cancer Wisconsin 777.6 0.966 3295.2 0.964 1710.2 0.966 2892.2 0.961

Bupa liver disorder 1024.7 0.597 8488.5 0.739 5142.6 0.728 7064.2 0.730

Cleveland heart disease 968.9 0.547 7405.0 0.593 4991.1 0.563 6655.6 0.580

Climate model failures 430.8 0.915 3084.4 0.941 1658.0 0.937 2690.1 0.924

Crx 643.1 0.801 4395.6 0.865 2340.6 0.850 3940.2 0.865

Forest types 957.7 0.879 3594.7 0.867 1870.7 0.871 3424.0 0.867

Glass 679.6 0.909 1565.2 0.945 803.2 0.936 14443.7 0.936

Haberman 818.0 0.735 6549.2 0.719 4464.7 0.699 5940.8 0.712

Iris 903.9 0.940 1894.0 0.927 929.0 0.933 1816.3 0.940

Image segmentation 2486.3 0.919 4502.8 0.895 2541.1 0.785 4121.0 0.895

Ionosphere 1150.0 0.926 3191.8 0.894 1720.5 0.906 2762.1 0.861

Magic04 786.0 0.742 47019.7 0.863 22727.5 0.865 35615.9 0.861

Mushroom 417.3 0.938 4080.3 0.958 1275.7 0.960 4103.7 0.959

Pen digits 7605.0 0.953 24480.5 0.981 14948.6 0.976 23036.5 0.977

Pima Indians 915.8 0.703 13762.2 0.750 7843.7 0.763 11019.1 0.754

Sensor readings 1250.8 0.926 7892.2 0.941 3512.9 0.865 7523.8 0.936

Shuttle 2518.1 0.939 3402.9 0.957 1779.9 0.896 3289.5 0.950

Sonar 1150.3 0.769 2832.0 0.870 1563.1 0.861 2441.9 0.870

Spam base 761.0 0.892 9078.5 0.906 4754.2 0.910 8237.4 0.905

Spectral flare 482.2 0.728 3948.8 0.891 2187.4 0.862 3390.0 0.857

Thyroid 843.4 0.944 2144.5 0.944 1162.9 0.944 2017.7 0.944

Transfusion 462.8 0.762 7185.3 0.782 4502.7 0.778 6449.3 0.783

Wine 1115.0 0.972 2046.5 0.972 1099.9 0.983 1927.4 0.972

Average values 2378.7 0,843 8225.8 0,871 4590.8 0,860 6692.8 0.867

Friedman rank (p-Value: 0.12775) 2.964 2.160 2.446 2.429

Results of the Experiment

In Table I the results of the experiment are shown, the first

column denotes the name of the dataset for that row, then each

pair of columns denote the size and accuracy of the respective

method over the 10 folds. First comes the results from the

random forest, secondly the covering method (Rule1) using

random subspace and random covering, then the covering

method (Rule2) bagging and random subspace and finally

(Rule3) uses bagging, random subspace and random covering.

If there exists a single best method with highest accuracy for a

dataset that accuracy is written using bold letters. If one

counts the number of best results we see that the random

forest algorithm collects 4 wins, Rule1 8 wins, Rule2 5 wins

and Rule3 2 wins. Given this the Rule1 method seems to

perform best, and Rule3 worst, with Rule5 and random forest

on par. Using the statistical test of [27] we can rank the

algorithms using the Friedman rank, the ordering changes a

bit, see bottom row of Table I, with (still) Rule1 best, then

Rule2, Rule3 and last random forest. Note that this value is

not statistically significant, having a p-value of 0.128. If we

look at the size of the ensembles, the random forest produces

by far the smallest number of rules in its ensemble, which is

expected due to how the tree induction algorithm reclusively

disjunctively-divides the feature space. Somewhat surprising

is that Rule1 produces the largest rules size in its ensemble,

here Rule3 was expected to create the largest rules space, as it

utilizes all the different methods for creating more diverse

rules sets. But it at least comes before Rule2 and is not far

from Rule1. To further investigate the strengths of the

different algorithms we conducted paired statistical

significant tests, between all algorithms, the results are shown

in Table II. The first column denotes which pairs we are

considering, the second column show the unadjusted p-value,

and the following columns show the results for the adjusted

p-values for Nemenyi‟s, Holm‟s, Shaeffer‟s and Bergmann's

procedure. From the results we can cannot reject the null

hypothesis, i.e. that there is no statistically difference

according to the p-value of 0.05 between any of the models.

The unadjusted p-value for random forest vs Rule1 is below

the threshold but not the adjusted values, which all are well

above the threshold of 0.05.

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

12

TABLE II: THE P-VALUES FROM PAIRWISE STATISTICAL TESTS

i hypothesis Un. p PNeme PHolm PShaf PBerg

1 R.F. vs .R1 0.0199 0.1192 0.1192 0.1192 0.1192

2 R.F. vs .R3 0.1205 0.7230 0.6025 0.3615 0.3615

3 R.F. vs .R2 0.1334 0.8003 0.6025 0.4002 0.3615

4 R1 vs .R2 0.4076 2.4458 1.2229 1.2229 1.2229

5 R1 vs .R3 0.4376 2.6253 1.2229 1.2229 1.2229

6 R2 vs .R3 0.9587 5.7523 1.2229 1.2229 1.2229

VI. DISCUSSION AND CONCLUSION

We have in this paper introduced a novel method (Rule1)

by combining the random subspace section with random

coverage to facilitate diversity in rules using the covering

algorithm for inducing unordered rule sets. We did compare

this method with the random forest algorithm and its

counterpart for unordered rule induction (Rule2) and an

algorithm for combining all three diversity facilitating (Rule3)

methods in one algorithm, bagging, random subset selection

and random covering. Even though the result were not

statistically significant at the p value of 0.05, the results are

promising having a Friedman rank p-value at just below 0.13.

It seems that the proposed method Rule1 warrants further

attention. One venue forward would be to set up an

experiment with more datasets to be able to answer the

question if there indeed exist differences between the methods

or if it is random fluctuations. It would also be interesting to

investigate if one can device a better method than just

randomly selecting examples to keep in the random covering

method. One idea could be to keep examples which have

belonged to the minority class of the rule and hence face the

danger of (erroneous) being classified as belonging to the

majority class. Yet another type of tack would be to introduce

weights to examples, which then can be adjusted when we

have covered an example (similar to boosting).

REFERENCES

[1] J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of Rule

Learning, Springer verlag, 2012.

[2] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 12,

pp. 993-1001, October 1990.

[3] T. Lindgren, “Randomized separate and conquer rule induction,” in

Proc. the International Conference on Compute and Data analysis

(ICCDA), 2017, pp. 207-214.

[4] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc.

the First International Workshop on Multiple Classifier Systems

(MCS), pp. 1-15, 2000.

[5] R. Gurung, T. Lindgren, and H. Boström, “Learning decision trees

from histogram data using multiple subsets of bins,” in Proc. the

Twenty-Ninth International Florida Artificial Intelligence Research

Society Conference, 2016, pp. 430-435.

[6] L. I. Kuncheva, Combining Pattern Classiers: Methods and

Algorithms, Wiley-Interscience, 2004.

[7] D. Ruta and B. Gabrys, “A theoretical analysis of the limits of majority

voting errors for multiple classifier systems,” Pattern Analysis and

Applications, vol. 5, no. 4, pp. 333-350, 2002.

[8] S. Nitzan and J. Paroush, “Optimal decision rules in uncertain

dichotomous choice situations,” International Economic Review, vol.

23, no. 2, pp. 289-297, 1982.

[9] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp.

241-259, 1992.

[10] R. B. Myerson, “Extended poisson games and the condorcet jury

theorem,” Games and Economic Behavior, vol. 25, pp. 111-131,

1997.

[11] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence

Review, vol. 33, no. 1, pp. 1-39, 2010.

[12] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in a

random forest?” in Proc. the 8th International Conference on

Machine Learning and Datamining in Pattern Recognition, 2012, pp.

154-168.

[13] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A

comparison of decision tree ensemble creation Techniques,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 29,

no. 1, pp. 173-180, January 2007.

[14] Daniel Hernandez-Lobato, Gonzalo Martinez-Munoz and Alberto

Suarez, “How large should ensembles of classifiers be?”, Pattern

Recognition, vol. 46, no. 5, pp. 1323-1336, May 2013.

[15] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classier

ensembles and their relationship with the ensemble accuracy,”

Machine Learning, vol. 51, no. 2, pp. 181-207, 2003.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data mining, Inference and, Prediction, Springer Series in

Statistics, Springer Ney York Inc., New York, NY, USA, 2001.

[17] P. Domingos, “A unified bias-variance decomposition and its

applications,” in Proc. the 17th International Conference on

Machine Learning, 2000, pp. 231-238.

[18] T. K. Ho, “The random subspace method for constructing decision

forests,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 8, pp. 832-844, August 1998.

[19] C. Padilha, A. D. Neto, and J. D. Melo, “RSGALS-SVM: Random

Subspace Method Applied to a LS-SVM Ensemble Optimized by

genetic algorithm,” in Proc. 13th International Conference on

Intelligent Data Engineering and Automated Learning (IDEAL),

2012, pp. 253-260.

[20] T. K. Ho, “Nearest neighbors in random subspaces,” in Proc.

Advances in Pattern Recognition: Joint IAPPR International

Workshops SSPR’98 and SPR’98, 1998, pp. 640-648.

[21] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,

pp. 123-140, August 1996.

[22] R. E. Schapire, “A brief introduction to boosting,” in Proc. the 16th

International Joint Conference on Artificial Intelligence, 1999, vol. 2,

pp. 1401-1406.

[23] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5-32, 2001.

[24] J. Stefanowski, “On combined classifiers, rule induction and rough

sets,” Transactions on Rough Sets VI, New York: Springer-Verlag,

2007, pp. 329-350.

[25] P. Savicky and J. Fürnkranz, “Combining pairwise classifiers with

stacking,” in Proc. the 5th International Symposium on Intelligent

Data Analysis, 2003, pp. 219-229.

[26] M. Lichman, “UCI machine learning repository,” Irvine, CA:

University of California, School of Information and Computer

Science, 2013.

[27] S. Garca and F. Herrera, “An extension on „statistical comparisons of

classifiers over multiple data sets‟ for all PAIRWISE Comparisons,”

Journal of Machine Learning Research, vol. 9, pp. 2677-2694, 2008.

Tony Lindgren was born in Hägersten, Stockholm in

1974. He received his master degree in computer and

system sciences in 1999. In 2006, he received his

Ph.D. degree in computer and system sciences. He has

worked both in academia and industry since 2008, he

is the inventor of numerous patents and has a

permanent position as lecturer at the department of

computer and system sciences at stockholm university

since 2012. His main interest is in the field of machine

learning, artificial intelligence and constraint programming.

Author‟s formal

photo

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

13

