
  

 

Abstract—Ensembles of classifiers has proven itself to be 

among the best methods for creating highly accurate prediction 

models. In this paper we combine the random coverage method 

which facilitates additional diversity when inducing rules using 

the covering algorithm, with the random subspace selection 

method which has been used successfully by for example the 

random forest algorithm. We compare three different covering 

methods with the random forest algorithm; 1st using random 

subspace selection and random covering; 2nd using bagging and 

random subspace selection and 3rd using bagging, random 

subspace selection and random covering. The results show that 

all three covering algorithms do perform better than the random 

forest algorithm. The covering algorithm using random 

subspace selection and random covering performs best of all 

methods. The results are not significant according to adjusted 

p-values but for the unadjusted p-value, indicating that the 

novel method introduced in this paper warrants further 

attention. 

 
Index Terms—Ensemble of classifiers, random covering, 

random subspace selection, diversity.  

 

I. INTRODUCTION 

Induction of rules are a formidable way of creating 

prediction models, the rules induced are easy to interpret and 

usually have a good predictive power [1]. When using 

ensemble methods, it is enough to have an inductive algorithm 

that have a predictive power better than random and able to 

create diverse models to create a powerful predictive 

ensemble using unweighted majority vote of all models that is 

part of the ensemble, for details see [2]. When considering 

ensemble of classifiers, it is clear that it is not the strength of 

each individual learner that determines the overall 

performance but rather the combination of individual learners, 

their diversity and the number of learners used in the 

ensemble. These three factors can be manipulated for 

improving ensembles. In this paper we mainly focus on how 

we can facilitate diversity in the inductive algorithm used. We 

present a modified rule induction method based on the 

covering algorithm. The method we introduce in this paper 

has its origins in the algorithm presented here [3], where we 

first introduced random coverage of examples, i.e. the amount 

of examples not remove when creating a rule, which is user 

defined via a hyperparameter.  

The paper starts with a review of the existing work on key 
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factors for ensembles. After that we will present our proposed 

method for random rule set induction and relate our method to 

the key factors introduced earlier. We will then present the 

experimental setting were we will compare our novel method, 

in different settings, with an established method, in this case 

the random forest algorithm. We then present the results of the 

experiment and finish off the paper with a discussion and 

reason about possible future work. 

 

II. KEY FACTORS IN ENSEMBLE LEARNING 

As mentioned in the introduction there exists different 

factors that can be identified and adjusted to improve the 

performance of the ensemble as a whole. Below we will look 

at these factors in isolation but also discuss how they relate 

and influence each other. 

But before we delve into these matter we first define our 

setting and what we mean by an ensemble. Here we follow the 

definitions presented by [4]. In the standard supervised 

learning setting, where supervised refers to that each example 

in the training set has an associated class or a numerical value. 

In the former setting we have a classification problem and in 

the latter we have a regression problem. In our case we will 

only consider classification problems. The training examples 

have the form (x1, y1),…,(xm, ym) were y = f(x) is an unknown 

function that we are aiming to learn. When performing 

classification, one typical setting is the binary classification 

problem, where y  {pos, neg}, we will refer to this set of 

classes as C, note that C is not restricted to contain only two 

class labels. The example xi is typically a vector xi,1, xi,2, …, 

xi,n, were the components can be of different types, all 

describing some properties, or features, of the example. The 

data type could either be a categorical value, i.e. xi,j  {red, 

green blue}, or a numerical value of some sort, i.e. xi,j  {ℝ, 

ℤ,...}. 

These are the most common data types but data can come in 

other shapes, for example as histograms, i.e. where 

components of the vector are them self a vector or a matrix, 

these types of data is rather unusual but if one is interested in 

utilizing these sub-structures, special algorithms can be used 

that consider the histogram structure while learning the 

function y, see for example [5]. 

In our notation xi,j  j refer to the example and i to a feature, 

hence the a combination of i,j will point out a feature for a 

particular training example. The set of labeled training 

examples we denote X. A classification learning setting thus 

involves X which are input to a learning algorithm which in 

turn produces a classifier, consisting of a hypothesis h about 

the function y = f(x). In an ensemble setting we will have S as 

input to one or more (hyperparameter ensemble size) learners 

Random Rule Sets – Combining Random Covering with 

the Random Subspace Method 

Tony Lindgren 

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

8doi: 10.18178/ijmlc.2018.8.1.655



  

which will produce classifiers denoted by h1, …, hS. One of 

the key issues for ensembles is how to combine the hypothesis 

hi into one classifier. How this has been done previously, is 

what we will look at now. 

A. Voting Scheme 

An ensemble is constructed by a training set X and by 

setting an ensemble size hyperperameter to S we will 

construct S hypothesis, h1, …, hS, (also referred to as models 

or classifiers). As mentioned earlier these hypotheses must be 

diverse, we will get into this issue in detail later on, so for now 

let us use an intuitive description of diversity with the 

meaning that we want different classifiers to make different 

faults. The algorithm used to create a hypothesis can have 

different types of outputs given what algorithm has been used. 

According to [6] there exist different levels of output from the 

classifiers (or hypothesis): 

1) oracle: Given a x to classify and a classifier hi we get the 

result of the prediction as right or wrong. 

,
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2) abstract: Given a x to classify and a classifier hi we get 

the result of the prediction as a class label c  C. 

3) rank: Given a x to classify and a classier hi we get the 

result of the prediction as alternative class labels ranked 

according to their plausibility, c  C. 

4) measurement: Given a x to classify and a classier hi we 

get the result of the prediction as the probabilities for 

each class label c  C. 

Given these different types of outputs from the classifiers, we 

can identify different methods for combining the classifiers. 

Majority voting is one of the most common method for 

combining classifiers. 
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Here S is (as earlier) the number of classifiers we use in the 

ensemble. Majority voting acts on the output labels from the 

classifiers, hence it operates on the abstract level, di,j is either 

0 or 1 depending if the classifier i outputs j or not. The 

ensemble chooses cmaj to be the class which receive the largest 

vote and hence outputs this as a prediction for example x. For 

a thorough an in-depth analysis of majority voting, see [7]. By 

utilizing some measure of quality of classifiers, weights can 

be added to the voting scheme to create a weighted majority 

voting scheme, it has been shown [8], that the optimal weights 

are set is to use the follow equation: 
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where acci is the accuracy for the i:th classifier. An obvious 

note here is that the accuracies should be calculated from data 

not used when building the classifiers. The equation for 

weighted voting is: 
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Stacking [9] is one method that utilizes meta-information 

from the base classifiers to train a model for combining the 

classifiers. It is apart from the different voting methods one of 

the most common method for combining different base 

learners. Other methods exist, for example one could simply 

sum all fired rules coverages, i.e. the number of covered 

training examples, and use the most frequent class as the 

prediction. This would correspond to a method on rank-level. 

B. Ensemble Size 

In Condorcet‟s jury theorem [10] he claims that, adding 

more members to the jury will increase the probability that the 

majority‟s decision is correct. This claim is valid given a few 

assumptions, each member of the jury should vote better than 

random, that they vote independently of each other and that 

the group of jury members face a decision problem, with an 

outcome that is either correct or incorrect. This theorem will 

when the jury size n  inf, pn 1 where p is the probability 

for voting correct. This theorem has later been extended to 

ensemble learning where jury member is swapped for 

classifiers and the outcome prediction of classes given an 

unseen example, see [2], [11]. 

Even though it has been shown in theory that more voters, 

or classifiers is better, there has recently been empirical 

observations that the predictive performance at some point do 

not gain much from added classifiers. In the work of [12] the 

authors investigated how many trees is necessary when using 

a random forest. They investigated 29 datasets and varied the 

ensemble size using a base of two, S = 2
j
, j = 1, 2, …, 12 

Hence the different ensemble sizes were: 2, 4, 8, 16, 32, 64, 

128, 256, 512, 1024, 2048 and 4096. In short they came to the 

conclusion that using larger number of trees than 128 is not 

worthwhile. 

The result from [13], [14] are not equally clear cut and they 

indicate that different machine learning problems need 

different ensemble sizes. Both papers investigate how to 

dynamically create a dynamic stopping criteria to decide 

when to stop adding more classifiers to an ensemble. In the 

former paper they achieve this by investigating the out-of-bag 

error of the ensemble and in the latter paper they investigate 

how stable the predictions from an ensemble are and base 

their decision on this information. 

C. Diversity and Individual Learner 

One thing that is clear, if we created an ensemble with 

many identical classifiers the result would be identical to 

using just one of these classifiers. For the ensemble setting to 

work we need diversity. The article [13] is recommended for 

an in-depth investigation of different measures of diversity, 

here we will discuss diversity more informally.  

From our initial observation that identical classifiers are 

not diverse we now Investigate different methods that have 

been used for facilitating diversity, the different methods can 

be classified as below:  

1) use different base classifiers 

2) use different feature sets 

3) use different data subsets 

We will now give examples of methods that facilitate 

diversity for each category, we will not try to define the 

meaning of diversity other than that these different examples 

will hopefully give a better intuitive understanding of the 
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concept. A paper that discusses these categories and more 

in-depth is [15]. 

1) Different base classifiers  

Using different base classifiers with the same data is a 

perfectly good way of creating ensembles, it is of course hard 

to know in advance how, for example an SVM model will be 

behave differently from a decision tree. Hence different 

learning algorithms will give rise to different models, the 

error of the models can be decomposed into their bias and 

variance. Where bias measures how far of the model are from 

the correct value and variance measures how predictions for a 

given example varies with different realizations of the model 

(different dataset used for creating the model). The error of a 

model for a regression problem can be defined as follows: 

Err(x) = (E[h(x) – y])
2
 + E [h(x)-E[h(x)])

2
]+e

2 

Err(x) = Bias
2 
+ Variance + IrreducibleError 

Above we follow the definitions of [16]. Pedro Domingos 

provide a unified bias-variance decomposition for the 1-0 loss 

and squared loss function to be used in the classification 

setting in [17], he also conducted experiments where he 

compared Decision Tree (C4.5), AdaBoost (with decision 

trees) and K-Nearest Neighbor. In this work Domingo‟s also 

put forward a hypothesis '...that higher-variance algorithms 

(or settings) may be better suited to classification (zero-one 

loss) than regression (squared loss)'. Using knowledge about 

different learning algorithms and/or impact of 

hyperparameters settings on the final model is a viable way of 

creating ensembles. But this tack has, as of yet, not been a 

popular way of creating ensembles.  

2) Different feature sets 

The random subspace method [18] which aims at creating 

diverse models by selecting the best feature from a randomly 

selected subset of features. In their paper they use the random 

subspace method for constructing a decision forest (ensemble) 

consisting of decision trees but the general method can and 

have been applied to other learners as well see [19, 20]. The 

algorithm for random subspace is shown in Algorithm 1. Input 

to the algorithm is the training examples (X), size of the 

ensemble (S), size of subspace (d) and the feature set (D). The 

algorithm selects randomly selects a set of features with 

replacement dset of size S. The tree induction function is then 

called with this feature set dset and the training examples X 

output is a model htemp which are added to the ensemble of 

models H. The algorithm continues from the top until enough 

models have been created. 

 

Algorithm 1 – Random subspace method 

Inputs: TrainingExamples(X), EnsembleSize(S),  

FeatureSet(D), SubspaceSize(d) 

Outputs: EnsembleOfModels(H) 

while S ≠  do 

 dset =  

 while d ≠  do 

  dset  dset  select d  D with replacement 

  d = d – 1 

 end while 

htemp InduceTree(X, dset) 

H  H  htemp 

S = S – 1 

end while 

return H 

3) Different data subsets 

The most popular methods for creating diversity is to alter 

the input data in different ways. One of the more popular 

methods is bagging (or bootstrap aggregating) proposed by 

[21]. The methods create different training sets which in turn 

are used to produce h1,…, hs models. Each dataset Xi are 

created by random sampling with replacement of examples 

from training examples X. Hence each training set will 

probably differ from each other w.r.t. composition of 

examples. When creating these bagged trainings sets it is 

expected that 63.2 % of the examples are unique examples 

from X and hence the rest duplicates. AdaBoost [22] is 

another popular method for creating different data subsets. 

Here each example has a weight wi associated with it, initially 

each example has equal weights wi = 1= m where m denotes 

the number of training examples. The following steps are then 

repeated according to the ensemble size S. 

For l  1, …, S: 

1) Train learner on Xt (X with associated weights W) 

2) hl: X  {pos, neg} with error t 

3) Choose: wt = ½ ln ( 1 - t / t ) 

4) Update: 
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Where Zt is a normalization factor to make sure that Xt+1 will 

be a distribution. In each iteration the weights of the 

erroneous predicted examples weights are increased, hence 

making the learning in the next round to focus extra on these 

examples. 

One difference between AdaBoost and for example 

bagging and the random subspace method is that it is serial in 

its nature, as input from an earlier stage is needed for the next 

stage, thus making it harder to parallelize the algorithm. 

One of the most popular ensemble methods is random 

forest [23] which combine the random subset method together 

with bagging, this combination has proven very efficient and 

effective. 

 

III. USING ENSEMBLES OF RULE SETS  

There has been some work in the area of utilizing rule sets 

as base models for ensembles, as well as using rule set for 

combining base learners. In the paper [24] by Jerzy 

Stefanowski he investigates how to use three different 

ensemble methods with rule induction. The three methods are 

bagging, n
2
 and a stacking type of meta-learning method. He 

compared the performance of the three methods on a few 

common datasets and his conclusions is that the n
2 

method 

seems to performed best. In their paper [25] Petr Savicky and 

Johannes Fürnkranz uses rule induction (ripper) as base 

learner together with different combining learners in a 

stacking approach. The investigate three different 

meta-learning algorithms and their performance: decision tree 

induction (c4.5), rule induction (ripper) and a nearest 

neighbor classifier (k-nn). Their results show that the nearest 
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neighbor classifier sometimes did drastically improve 

performance as compared to using unweighted voting on the 

base classifier models while the other two methods did not.   

In the paper [3], Tony Lindgren introduce a new parameter 

for the covering algorithm which allows the user to specify 

how many of the covered examples, by the induced rule, 

which should not be removed from the set of examples to be 

covered. Hence these examples must then be covered again, 

which lead to diverse sets of rules. In his paper he concludes 

that this modification indeed introduce diversity in rule sets. 

But using the method in combination with bagging did not 

improve performance, which was expected, instead it worked 

best on its own. The novel method we explore in this paper 

uses the new parameter in a random subset selection setting, 

which we will describe in detail in the next section. 

 

IV. NOVEL METHOD 

The novel method we introduce here is a combination of 

the earlier method presented in [3] and the random subspace 

method [18]. The algorithm works by randomly selecting a 

subset (according to a hyperparameter) of all available 

features in a stepwise fashion, for each condition in a rule. 

After a rule has been induced the new hyperparameter is then 

used to select randomly how many of the covered examples 

which should be removed from the set containing the 

remaining examples to be covered (refereed here on as 

random covering). The algorithm is more formally described 

in Algorithm 2.  

The inputs to the algorithm is the training examples (X), a 

set of available features (D), size of the ensemble, i.e. number 

of classifiers (S), size of subspace (d) and finally the 

proportional size of examples to remove after covering (pR). 

The algorithm‟s main loop makes sure that we create S 

number of classifiers. The inner loop induces new rules until 

all examples are covered. It does this by the function 

createOneRule, which uses the current training examples (X) 

and hyperparameters (D, d). The function repeatedly calls 

getRandomSubSpace with D and d this function returns a set 

of attributes a. The best condition which utilizes one attribute 

from a according to some quality criteria are then added to the 

rule being built. This process continues until the rule satisfies 

the stopping criterion or there are no examples left to cover. It 

then returns the covered rule (Rule) together with the set of 

examples covered by the rule (CovEx). The function 

exToRemove uses CovEx and pR, the function randomly 

selects for each example if it should remove the example from 

CoveredEx or not w.r.t. the hyperparameter pR. It then returns 

the (possibly) modified CovEx set. The examples in CovEx 

are then removed from the X and the inner loop is then 

restarted until no X are left. 

 

Algorithm 2 – Random rule sets 

Inputs: TrainingEx(X), FeatureSet(D), EnsembleSize(L),                                            

SubspaceSize(d), pSizeExToRemove(pR) 

Outputs: EnsembleOfModels(H) 

H =   

while S ≠  do 

    while X do 

   CovEx, Rule createOneRule(X, d, D) 

   ExToRemove exToRemove(CovEx, pR) 

   X X \ ExToRemove 

   H H Rule 

end while 

 S   S – 1 

end while 

return H 

 

function getRandomSubSpace(d, D) 

dset =  

while d ≠  do 

     dset  dset  select d  D with replacement 

  d = d – 1 

 end while 

return dset 

 

function exToRemove(CoveredEx, pToRemove) 

for all examples, ex CoveredEx do 

randVal randomFloat 

if randVal =< pToRemove then 

CoveredEx CoveredEx \ ex 

end if 

end for 

return CoveredEx 

end function 

 

function createOneRule(X, d, D) 

c //Initialize a rule with empty conditions 

repeat 

for all attributes, a getRandomSubSpace(d, D) do 

R c = c //Use attribute a to create a condition 

BestCa eval according to some quality criteria 

end for 

c c BestCa

Rule c 

until Rule satisfies a stopping criterion X = 

CoveredEx gets all examples covered by Rule 

return CoveredEx, Rule 

end function 

 

V. EXPERIMENT AND RESULTS 

Our empirical evaluation of the novel algorithm was set up 

as follows.  The experiment where conducted using a 10-fold 

cross validation fashion, hence all results are the average 

values from these 10 folds. Size (number of rules) and 

accuracy of each algorithm was used as performance metrics.  

We compared the random forest algorithm together with 

unordered rule sets induced in three different ways. The first 

method utilized random subspace selection together random 

covering, i.e. the novel method described in Algorithm 2. The 

second unordered rule induction method utilized bagging 

together with random subset selection, i.e. the unordered rule 

set counterpart of random forest. The third unordered rule 

induction method utilized all three diversity inducing methods 

at once, i.e. random subspace selection, bagging and random 

covering.  All compared algorithms were implemented using 

SWI-Prolog, and are available to download from 

http://dsv.su.se/~tony/programs.html together with the 

datasets used in the experiment. 

All datasets were taken from the UCI repository [26], in total 

28 datasets were used. The parameters that were used was the 
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following: ensemble size = 200, random subset size = 0.3, 

minimum coverage = 10, minimum margin = 0.9, random 

coverage = 0.2. The ensemble size was selected upon the 

results of [10], where they claim that larger ensembles than 

128 is not necessary, so we set the size to 200, just to be sure. 

The random subset size of 0.3, meaning that 30% of the 

attributes will be considered when inducing conditions, which 

is a reasonable size. Minimum coverage and minimum margin 

are both stopping criterions, where the first stops if less than 

or equal to 10 examples are covered by a rule and minimum 

margin specifies that the margin difference between the two 

largest classes, should be 90% or larger to stop. Random 

coverage of 0.2 reflect that 20% of the covered examples are 

left in the training set to be covered again. The prediction of  

the ensemble was done using unweighted voting.   

TABLE I: THE RESULTS OF THE EXPERIMENT 

Dataset 
Rnd. Forest Rule1 Rule2 Rule3 

Size Accuracy Size Accuracy Size Accuracy Size Accuracy 

Acute Diagnosis 1 828.2 1.000 1794.2 1.000 916.2 1.000 1774.5 1.000 

Acute Diagnosis 2 661.1 1.000 1531.6 1.000 752.2 1.000 1525.1 1.000 

Adult 16841.7 0.760 31363.6 0.757 18530.2 0.772 1945.6 0.760 

Arrhythmia  1136.5 0.629 6222.2 0.613 4210.1 0.598 5532.9 0.604 

Balance scale 17988.8 0.805 13569.5 0.856 8602.7 0.872 11819.1 0.880 

Breast cancer Wisconsin 777.6 0.966 3295.2 0.964 1710.2 0.966 2892.2 0.961 

Bupa liver disorder 1024.7 0.597 8488.5 0.739 5142.6 0.728 7064.2 0.730 

Cleveland heart disease 968.9 0.547 7405.0 0.593 4991.1 0.563 6655.6 0.580 

Climate model  failures 430.8 0.915 3084.4 0.941 1658.0 0.937 2690.1 0.924 

Crx    643.1 0.801 4395.6 0.865 2340.6 0.850 3940.2 0.865 

Forest types    957.7 0.879 3594.7 0.867 1870.7 0.871 3424.0 0.867 

Glass  679.6 0.909 1565.2 0.945 803.2 0.936 14443.7 0.936 

Haberman 818.0 0.735 6549.2 0.719 4464.7 0.699 5940.8 0.712 

Iris 903.9 0.940 1894.0 0.927 929.0 0.933 1816.3 0.940 

Image segmentation 2486.3 0.919 4502.8 0.895 2541.1 0.785 4121.0 0.895 

Ionosphere  1150.0 0.926 3191.8 0.894 1720.5 0.906 2762.1 0.861 

Magic04   786.0 0.742 47019.7 0.863 22727.5 0.865 35615.9 0.861 

Mushroom 417.3 0.938 4080.3 0.958 1275.7 0.960 4103.7 0.959 

Pen digits 7605.0 0.953 24480.5 0.981 14948.6 0.976 23036.5 0.977 

Pima Indians 915.8 0.703 13762.2 0.750 7843.7 0.763 11019.1 0.754 

Sensor readings 1250.8 0.926 7892.2 0.941 3512.9 0.865 7523.8 0.936 

Shuttle  2518.1 0.939 3402.9 0.957 1779.9 0.896 3289.5 0.950 

Sonar  1150.3 0.769 2832.0 0.870 1563.1 0.861 2441.9 0.870 

Spam base 761.0 0.892 9078.5 0.906 4754.2 0.910 8237.4 0.905 

Spectral flare 482.2 0.728 3948.8 0.891 2187.4 0.862 3390.0 0.857 

Thyroid    843.4 0.944 2144.5 0.944 1162.9 0.944 2017.7 0.944 

Transfusion 462.8 0.762 7185.3 0.782 4502.7 0.778 6449.3 0.783 

Wine 1115.0 0.972 2046.5 0.972 1099.9 0.983 1927.4 0.972 

Average values 2378.7 0,843 8225.8 0,871 4590.8 0,860 6692.8 0.867 

Friedman rank (p-Value: 0.12775)  2.964  2.160  2.446  2.429 

 

Results of the Experiment 

In Table I the results of the experiment are shown, the first 

column denotes the name of the dataset for that row, then each 

pair of columns denote the size and accuracy of the respective 

method over the 10 folds. First comes the results from the 

random forest, secondly the covering method (Rule1) using 

random subspace and random covering, then the covering 

method (Rule2) bagging and random subspace and finally 

(Rule3) uses bagging, random subspace and random covering. 

If there exists a single best method with highest accuracy for a 

dataset that accuracy is written using bold letters. If one 

counts the number of best results we see that the random 

forest algorithm collects 4 wins, Rule1 8 wins, Rule2 5 wins 

and Rule3 2 wins. Given this the Rule1 method seems to 

perform best, and Rule3 worst, with Rule5 and random forest 

on par. Using the statistical test of [27] we can rank the 

algorithms using the Friedman rank, the ordering changes a 

bit, see bottom row of Table I, with (still) Rule1 best, then 

Rule2, Rule3 and last random forest. Note that this value is 

not statistically significant, having a p-value of 0.128. If we 

look at the size of the ensembles, the random forest produces 

by far the smallest number of rules in its ensemble, which is 

expected due to how the tree induction algorithm reclusively 

disjunctively-divides the feature space. Somewhat surprising 

is that Rule1 produces the largest rules size in its ensemble, 

here Rule3 was expected to create the largest rules space, as it 

utilizes all the different methods for creating more diverse 

rules sets. But it at least comes before Rule2 and is not far 

from Rule1. To further investigate the strengths of the 

different algorithms we conducted paired statistical 

significant tests, between all algorithms, the results are shown 

in Table II. The first column denotes which pairs we are 

considering, the second column show the unadjusted p-value, 

and the following columns show the results for the adjusted 

p-values for Nemenyi‟s, Holm‟s, Shaeffer‟s and Bergmann's 

procedure. From the results we can cannot reject the null 

hypothesis, i.e. that there is no statistically difference 

according to the p-value of 0.05 between any of the models. 

The unadjusted p-value for random forest vs Rule1 is below 

the threshold but not the adjusted values, which all are well 

above the threshold of 0.05. 
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TABLE II: THE P-VALUES FROM PAIRWISE STATISTICAL TESTS 

i hypothesis Un. p PNeme PHolm PShaf PBerg 

1 R.F. vs .R1 0.0199 0.1192 0.1192 0.1192 0.1192 

2 R.F. vs .R3 0.1205 0.7230 0.6025 0.3615 0.3615 

3 R.F. vs .R2 0.1334 0.8003 0.6025 0.4002 0.3615 

4 R1 vs .R2 0.4076 2.4458 1.2229 1.2229 1.2229 

5 R1 vs .R3 0.4376 2.6253 1.2229 1.2229 1.2229 

6 R2 vs .R3 0.9587 5.7523 1.2229 1.2229 1.2229 

 

VI. DISCUSSION AND CONCLUSION 

We have in this paper introduced a novel method (Rule1) 

by combining the random subspace section with random 

coverage to facilitate diversity in rules using the covering 

algorithm for inducing unordered rule sets. We did compare 

this method with the random forest algorithm and its 

counterpart for unordered rule induction (Rule2) and an 

algorithm for combining all three diversity facilitating (Rule3) 

methods in one algorithm, bagging, random subset selection 

and random covering. Even though the result were not 

statistically significant at the p value of 0.05, the results are 

promising having a Friedman rank p-value at just below 0.13. 

It seems that the proposed method Rule1 warrants further 

attention. One venue forward would be to set up an 

experiment with more datasets to be able to answer the 

question if there indeed exist differences between the methods 

or if it is random fluctuations. It would also be interesting to 

investigate if one can device a better method than just 

randomly selecting examples to keep in the random covering 

method. One idea could be to keep examples which have 

belonged to the minority class of the rule and hence face the 

danger of (erroneous) being classified as belonging to the 

majority class. Yet another type of tack would be to introduce 

weights to examples, which then can be adjusted when we 

have covered an example (similar to boosting).  
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