
 Natural language discourse generation
in a support tool for conceptual modeling

Hercules Dalianis

SYSLAB
Department of Computer and Systems Sciences

The Royal Institute of Technology and
Stockholm University

Electrum 230
S-164 40 Kista

SWEDEN
ph. (+46) 8 16 16 79

E-mail: hercules@dsv.su.se

Abstract. The support systems for conceptual modeling of today lack natural
language feedback. The paper argues for the need of natural language discourse for
the validation of a conceptual model. Based on this conclusion, a suggestion is
made on a natural language discourse generation system as a validation tool and
also as a support tool in executing a conceptual model. Various appropriate natural
language discourses are then proposed in the paper. The proposed texts were
analyzed with Hobbs' coherence relations and the discourses could be analysed
with fewer coherence relations than the whole theory contains.
 A discourse grammar is generalized from the analyzed discourses. A suggestion
to control the generation is the user's question together with a user model and
various feature checking of the grammar.
 To conclude the paper a support system based on the natural language generation
techniques of today and on previous working systems constructed by the author is
suggested.

1. Introduction

During the construction of a large scale computer system one should decide on the
functionality of the system, the so-called requirements engineering process, before
starting its implementation. Therefore a formalism for modeling an information system
has been developed, the so-called conceptual modeling language. A conceptual model
must be validated to discover if it corresponds to the described domain. Since the
conceptual model is described in a formal language the information can be difficult to
understand and validate for an inexperienced user. This implies that natural language,
(NL), is appropriate to use in the validation process. Another reason for using NL is
that a novice user does not have to learn a complicated language or formalism to
understand the conceptual model.
 Natural language generation, (NLG), will give the end users a direct feedback of the
semantics of the formal representation, we will in fact lower the conceptual barrier of
the end users by using NL.
 It is important to generate natural language discourses from a conceptual schema. The
reason for the need of discourses, i.e. a set of logical interconnected sentences, and not
single sentences, arouse from previous approaches of creating natural language
descriptions of a conceptual model in Dalianis (1989), where the constructed natural

language generation system was criticized for generating a set of unordered sentences.
A discourse
is also necessary to use to explain the overall semantics of the conceptual model, while
each part of the conceptual model is related to one or many other parts of the model.
 A number of appropriate discourses is proposed to answer the questions which are
supposed to be posed by the users of a natural language generation system. The
proposed discourses are analyzed with Hobbs' coherence relations (Hobbs, 1985; 1990)
and a discourse grammar will be generalized from the discourses.
 The discourse grammar and the methodologies of previous constructed NLG-systems,
is used to propose a natural language discourse generation system for a conceptual
model. The generation in the NLG-system is carried out at deep level and not a surface
level, (Which is explained later). The discourse is created using a subset of Hobbs'
coherence relations, (Hobbs, 1985; 1990).
 Other problems which are also discussed are how to select the appropriate information
from the conceptual model to create a suitable discourse. The selection is based on
heuristics and the delimitation is carried out with user modeling. i.e to model the
knowledge level of the user. A suggestion of a user modeling method is proposed. The
method is inspired by the method in Finin (1989), where stereotype users where
structured in a hierarchy. The application of the user models on the selected discourses
is based on some ideas in Paris (1985; 1988).

2. Support systems for information and data modeling

2.1. The information system development process
The purpose of an information system is to store and retrieve information about a real
world domain. During the construction of an information system various small problem
can emerge. To avoid flaws in later stages of the information system development
process, an information system has to be described at a higher level abstraction than at
the programming level. For this purpose various high level and abstraction languages
have been developed. One of them is the Conceptual MOdeling Language, (CMOL),
(Bubenko & Lindencrona 1984; Bubenko 1986), in which a conceptual model can be
expressed. A conceptual model, (CM), describes a piece of the real world, a domain, in
an unambiguous and non-redundant way.

Problems,
Informal
Requirements,
Domain
knowledge

Requirements engineering

Design engineering

Information
system

Specification

Part of
specification
to be
computerized

Design

Verification

Knowledge
acquisition

Validation

Fig. 1 Information Systems Development

 A conceptual model is built and revised during a comparatively long period of time or
different period of times. To build a conceptual model of a system or an organisation is
by necessity an iterative process ranging from a vague idea of what it will do to a full

fledged system. But even when the computer system is fully developed new extensions
of the system will be needed in order to cope with changes in the domain (real world).
Within the field of Information Systems, the development process can be said to be
divided into requirement, and design engineering. Requirement engineering is
discussed in Hagelstein (1988). Requirement engineering defines the method and effort
to construct a specification in a domain, as a solution of a real world problem, i.e. a
conceptual model of a computer system supports the domain.
 Requirement engineering consists of two major parts: Knowledge acquisition and
Validation. Knowledge acquisition consists of gathering information about the known
problems, informal requirements and domain knowledge. From this information a
specification is built. The validation consists of rephrasing the specification back to the
domain expert to find out if it correctly describes the domain, to execute and test the
model or to analyze it with heuristic methods.
 Design engineering consists of two parts: Design and Verification. This paper does
not cover Design engineering, since it does not affect the conceptual model.

2.2. A Conceptual model
According to Boman et al, (1991), Bubenko & Lindencrona (1984) and Bubenko
(1986), an information system contains a conceptual model and an information
processor. A conceptual model, (CM), contains a conceptual schema, (CS) and an
information base or a fact base. The conceptual schema can be considered to be a
skeleton description of the real world or domain, i.e. which entities possible can exist.
The information base contains statements describing an object system, i.e. the domain
or real world. The purpose of the information processor is to enable users to query and
update the conceptual schema and the information base.
 A conceptual model consists of a static and a dynamic part, of entity types, (objects) ,
relations, attributes, ISA-links, events, Static- and Dynamic integrity constraint rules
and Derivation rules, (SDD-rules), and finally the information base contains instances,
(facts).

2.2.1. Validation and support tools for validation

The validation process checks if the constructed conceptual model is correct according
to the real world. The validation process shall detect flaws and give suggestions for
correction. This can be achieved by analyzing the conceptual model with expert
systems, by doing consistency checking (Kuntz & Melchert, 1989; Tauzovich, 1989;
Wohed, 1988), by executing the conceptual model in e.g. MOLOC, (Johannesson,
1990), or by paraphrasing the conceptual schema back at single sentence level to the
user for validation, in e.g. AMADEUS, (Black, 1987) or in Dalianis (1989). The
graphic representation of the domain is also a part of the validation tool, ALECSI,
(Cauvet et al, 1991) RIDL*, (De Troyer et al, 1988) Validation is one of the most
important tasks in the requirements engineering, since the validation will reveal if
something has gone wrong in the conceptual modeling phase. In this phase the domain
expert will make his judgement if the conceptual model is the one he intended.
 A method of validation is to paraphrase the model into natural language, (NL). NL is a
reference for all people involved in the development of the system. The paraphrasing is
usually performed by the system analyst, but it would be convenient if it could be
carried out automatically, so the domain expert himself could validate the conceptual
model without having deeper knowledge in the conceptual modeling formalism.
 None of the support tools mentioned above has any natural language discourse
generation component.

2.2.2. Prototyping
MOLOC stands for MOdeling in LOgiC, (Johannesson, 1990), which is a prototype
semantic database management system. MOLOC is a support system for conceptual
modeling, where you can design and execute a conceptual model of a database.
MOLOC demonstrates rapid prototyping and testing without having to construct the
real system. MOLOC has a graphical interface called MGI, (MOLOC-Graphical
Interface). You can design your conceptual schema in MGI, but the SDD-rules and the
events updating the CM have to be stated directly in the MOLOC formalism.

2.2.3. The different users
One can distinguish three groups of individuals who are using conceptual models and
could consequently use a natural language generation system: the domain expert, the
system analyst and the end user. They have different needs and knowledge.

1) The domain expert , (DE), will need the model paraphrased to check if everything is
correctly represented, if all facts are present, if the concepts have correct names
and if the model is logical.

2) The system analyst, (SA), is interested in the function of the conceptual model for
building a computer system and if the purpose of the model is correct.

3) The end user, (EU), wants to get a quick overview of the model to know how the
knowledge is stored and how to navigate in the system.

Here we have separated three users of the conceptual model and three various types of
information which need to be paraphrased into natural language.

There are various reasons for paraphrasing a CM to NL:
• To lower the conceptual barrier of the user.
• To ease the understanding of the CM-formalism for a DE.
• To give possibility for a DE to validate the model by himself.
• To ease the understanding of the domain for a SA.
• To detect errors and traps in the CM.
• To focus on certain aspects of a CM.
• To have a reference language (NL) which the DE, SA and EU understands.
• To teach the conceptual model formalism for a DE or a SA.
• To introduce a newly assigned person to the domain.
• To give a quick overview in the beginning of the conceptual modeling phase
 where the persons involved in the modeling phase need to know what has been
 modeled until now.
• To inform an end user of a natural language interface to a database how the
 database is organized and which questions s/he can ask to obtain information from
 the database.
• To indirectly validate the CM by the dictionary writing for the NLG-system.

The generation will be divided and combined between generated information from both
the CS, which describes the type of information, and how it is stored in the database,
and corresponding instances from the database. This combination will help the system
engineer to validate the CM and the end users to navigate in the computer system.
 The natural language generation can do a sort, selection or enumeration of, for
example, subclasses, which will help the DE to remember if he has forgotten anything.

 The generation from a CM can be performed at two levels: one at a general conceptual
schema level and the other on a conceptual model level, where also instances of objects
are used.

The set of questions and commands the system should handle :
• What do you know ?
• Describe an entity type !
• Describe instances of entity types !
• What is the relationship between different entity types ?
• What is the relationship between different instances ?
• What events are there ?
• What SDD-rules constraint the CM ?
• Which entities types are affected by which event ?
• List all entity types, (events, SDD-rules, instances) !

2.3. Various proposed discourses
The examples on proposed discourses below, originates from both the author's work,
(Dalianis, 1992) and the users of the conceptual modeling tool MOLOC and MGI. The
conceptual model below fig. 2 is used for the content of the proposed discourses. The
text examples should help the system analyst, (SA), the domain expert, (DE) and the
end user, (EU) in their various tasks.

A conceptual model in the car domain
Car schema

driving
licence

car owner

address person

(m,1,t, t)

isa

(1,m,p,p) (1,1, p, t)

ownership

driving_licenceaddress

Fig 2.

Car information base
person(carl).
driving_licence(carl,121).

person(lisa).
address(lisa,211).

owner(robert).
address(robert,311).
driving_licence(robert,321).

car(volvo).
ownership(robert,volvo).

What do you know ? (A sort of help function)
What do you know ?

list all * (* stands for parts of the CM)
entity types
attributes
events
relationships between different entity types
relationships between different instances
relationships between entity types and events
SDD-rules
 Static integrity constraint rules
 Dynamic integrity constraint rules
 Derivation rules.
facts:
instances of entity types

List all [A] questions (The user�will get an overview of the contain of the CM)
List all entity types !

person
owner
car

What-is-[A] ? questions (The user asks about an entity type or instance)
What is a person ?
1) Some persons are owners
 A person can have exactly one address

and exactly one driving licence
Carl is a person.
He has a driving licence 121 and no address
Lisa is a person
She has an address 211 and no driving licence (Informing about non-existent

 facts is optional)
What is Carl ?
2) Carl is a person. Facts

He has a driving licence 121 and no address
A person can have exactly one address Schema (This part is optional)
and exactly one driving licence

What does following SDD-rule mean ?
The Static rule expressed in MOLOC In Logic
inconsistent :- IF P owns C AND
 ownership(P,C), NOT P has_address A
 not(address(P,A)). THEN inconsistent

The inconsistency means that the static integrity constraint rule is false
3) Every owner (person) who owns a car must have an address.

What-is-the-relation-between [A] and [B] and [C....] questions
What is the relation between a owner and a car ?
4) Every owner is a person,who must own one or more cars and

every owner must have an address
Schema S-rule

Events
Here follows questions which concern the dynamic part of the model.
What events are there on cars ?
 buy_car Enumerating

What are affected by the event buy_car ?
buy_car affects:

car
person
owner
address

 and
a static integrity constraint rule

What are the relations between the event buy_car and car, person, owner, address ?
5) If a person buys a car

then he must became an owner
Every person who owns a car must have an address.

An execution with MOLOC, (Johannesson, 1990), enhanced with a proposed NLG-
system which gives explanation of what is carried out during an event is shown below.

The user executes an event.
Which event to perform ?

Let Carl buy a car VOLVO !
6) If you let Carl buy the car VOLVO
 then the totality between attributes will be violated

A car must be owned by exactly one owner
 Carl owns the car VOLVO

Robert owns the same car VOLVO

The user executes an event.
Which event to perform ?
Let Carl buy a car SAAB !
7) If you let Carl buy a car
 then the static integrity constraint rule will not hold which says
 For a person to became an owner of a car s/he must have an address
 Carl has no address

All together there are 41 proposed discourses.
 These proposed ideas are partly implemented on sentence level in AAIS-Prolog on a
Macintosh, (Dalianis, 1989). The sentence level translation has also been discussed in
Chen (1983).
 The question types could, for example, be selected from menus, and the objects by
pointing with a mouse on a graphical conceptual schema. The input to the question
types could be extended with some limited text input.

3. Text generation

3.1. Discourse structure and analysis
The syntax and semantics of sentences have been well-studied and the syntax of a
sentence is well defined. Previous constructed systems which generated natural
language sentences from conceptual models are described in Dalianis (1989; 1990),
however, given that the information contained in a conceptual model is context
dependent, there has been a demand to describe the relationships between natural
language sentences, i.e. a discourse which is a set of related and interconnected natural
language sentences.
 If we look at a discourse, we know that its sentences are more loosely kept together,
than the parts of the sentences themselves. For example, if we mix a set of sentences in
a discourse we would probably still understand the message but this would require a
large effort and some information would of course be lost. A discourse which is easy to
understand with less effort is called coherent.
 There are many methods for analyzing discourses and understanding how sentences
are connected. The main principle is to find so called key words or rhetorical primitives
which are described in Rhetorical Structure Theory, (RST), (Mann, 1984; Mann &
Thompson, 1988) or the coherence relations of Hobbs, (Hobbs, 1985; 1990). The
coherence relations, for example, relate two or more sentences to one unit, and this unit
in turn is ordered in a higher hierarchical structure, which describes the entire discourse.
 The assumption made is the following: A discourse is coherent if its sentences can be
fitted into one overreaching relation.

Hobbs' coherence relations are explained below:
Occasion relations
 occasion a weak causal relation, a coherence between events in the world.
 cause special case of the occasion relation, the normal causal relation

(keyword if then..).
 enablement special case of the occasion relation, the first assertion enables the
 second assertion.
Evaluation relations
 evaluation a meta comment, (keyword e.g. Do you understand so far...

This is good news)
Ground-figure and explanation relations
 ground-figure also called background, it is old information, background information,

often time related and related to new information.
 explanation is an inverted cause, i.e. a proposition is caused by something.

(keyword because)
Expansion relations
 elaboration describes an object or event more in detail, (keyword i.e. that is)
 exemplification gives an exemplification of an type of event or object

(key word for example).
 generalization a proposition is generalized, (keyword it is well known that...)

it is the same as exemplification, but the order is switched.
 parallel two or more sequential propositions at the same level describing

the same object or event level.
 violated- two different assertions gives two different results
 expectation a proposition is true but... (keyword but).
 contrast two similar assertions gives two completely different results.

Fig. 3 Hobbs' coherence relations

3.2. Text generation technology
In the research field of text generation or natural language generation there exist
various approaches to solve the problem of generating appropriate natural language
text. See fig. 4.

Knowledge
represent-
ation

Deep
generation

Surface
generation

User

Natural
language

User
model

Grammar

Fig. 4 An "average" text generation system

3.2.1. Deep and surface generation
Many researchers consider the task of natural language generation from a computer to
consist of two sub-tasks, namely:

1) Deep generation
2) Surface generation

In the first subtask, the deep generation, it is decided what to say from the abundant
knowledge base. The planning and organization of the information content is

determined. Thus it is concluded in what form it should be presented according to a
specific user model and in which order should the sentences be generated to make the
text coherent. The deep generation in a computer must make steps similar to when a
human generates text. During the second subtask, the surface generation, it has to be
decided how to say it, i.e. the realization of the syntactic structures. Moreover a
selection of the lexical items appropriate to express the content has to be made. This
paper concerns the first subtask, the deep generation component of the natural language
generation system.

3.2.2. Deep generation
No one has yet enumerated the kind of tasks a text planner should be able to do, but
some of the problems are known. One problem is the content determination, i.e. to
select what to say of the abundant information in a knowledge base. A partial solution
to this problem is dependent on the question and the knowledge level of the user.
 There are various approaches for solving these problems, ranging from discourse
strategies as in the system TEXT , (McKeown, 1985a; 1985b), applications in RST,
(Hovy, 1988; Rankin, 1989), theorem proving approaches in the KAMP system,
(Appelt, 1985), to user modeling approaches (Paris, 1985; 1988; Kass & Finin, 1988;
Finin, 1989).

3.3. Summary
The problem for many users of the conceptual models is to have an overview and
understanding of the represented concepts, it therefore seems obvious to translate the
model into natural language. Since the conceptual model is heavily dependent on all its
parts, it seems appropriate to have a natural language discourse generation. This can be
achieved by connecting each part of the conceptual model with the coherence relations
of Hobbs, (Hobbs, 1985; 1990). This will make the natural language generation
produced from the system coherent and easily read.
 A technique for natural language generation is available and discussed in Dalianis,
(1990) and the problem is to find what parts of the conceptual model corresponds to
which coherence relations. The sentence level generation has already been carried out
by the author and described in Dalianis (1989).

4. System overview

MOLOC
Conceptual
Model

Generator

Surface
grammar

Discourse
grammar

User
rules

Query
Interface

User

Query

Answer

 Fig 5. Overview of the proposed natural language generation system

 The system is built around three modules: the user rules, the discourse grammar and
the surface grammar, with a query interface which processes the question input from
the user. The query interface passes the processed input both to the user module and to
the generator. The user module will find the intentional goals of the user and at what
level the user is by the way s/he is asking questions, this is described in (Dalianis, 1992)
This information together with the query from the user will also give an answer to the
user's first intention: to reply to the user's question by making a selection of information
from the knowledge base.

The generation is carried out in three steps:
1) The user rules: These are used for finding out what the user knows and building a

dynamic user model which helps to select the correct information from the
conceptual model.

2) The discourse grammar: This builds a discourse structure from the selected inform-
ation. The discourse structure should fulfil the intentions and goals of the user.

3) The surface grammar is not described here. It is at a syntactic level and belongs to
the surface generation.

4.1. Extracting discourse grammar rules.
An discourse analysis with Hobbs' coherence relations is carried out below, on one of
the 41 previous proposed texts in chapter 2, namely text nr 1).

What is a person ?
1) Some persons are owners
2) A person can have exactly one address and
3) (A person can have) exactly one driving licence
4) Carl is a person.
5) He has a driving licence 121
(6) and (he has) no address)
7) Lisa is a person
8) She has an address 211
(9) and (She has) no driving licence)

 The text above gives the discourse tree, shown in fig 6. (The
numbers in the discourse tree correspond to each sentence above,
sentences 6 and 9 are not included in the analysis)

exemplification

elaboration parallel

elaborationelaborationparallel
e_isa_e

e_attr_e

i_isa_e i_attr_i

e_attr_e

i_isa_e i_attr_i
1

2 3

4 5 7 8

Fig. 6 The main division of the text is the exemplification relation between the schema and
instance level. The schema leaf is divided by the elaboration relation which elaborates the ISA-
relation into two equivalent attribute statements related by a parallel relation. In the instance
leaf we find a parallel relation which describes two pieces of a discourse at the same level.

Each discourse is described by an elaboration relation which elaborates an ISA-statement into
an attribute statement at ISA-level.
 All the 41 proposed discourses were analyzed with Hobbs' coherence relations and it
was found that only the exemplification, generalization, elaboration, cause and
explanation relations were necessary for the analysis.

Discourse grammar
The discourse structure will focus on certain aspects of the conceptual model, (CM),
and will linearize the parallel message of the conceptual model, this is also described in
(Dalianis, 1992). The following discourse grammar is generalized from the analysis
performed on the proposed texts. The discourse grammar uses the coherence relations
of Hobbs, the ones which were used in the analysis of the proposed texts. The terminals
of the discourse grammar are single sentences or elements of the CM . The discourse
grammar will transform a piece of a conceptual model to a discourse structure which
then easily can be transformed to a text by a surface generator.
 The representation below is in Backus-Naur form or a Context Free Grammar.
"{}" means that something is optional and " | " means or and "()*" means none, one or
many times.

The discourse grammar definition
Top level
DISCOURSE ::== EXEMPLIFICATION
DISCOURSE ::== {GENERALIZATION} (optional)
DISCOURSE ::== ELABORATION {GENERALIZATION}
DISCOURSE ::== CAUSE
DISCOURSE ::== EXPLANATION

Rest
ELABORATION ::== E_ISA_E PARALLEL
ELABORATION ::== I_ISA_E PARALLEL
ELABORATION ::== I_ISA_E I_ATTR_I
ELABORATION ::== E_ISA_E E_ATTR_E
ELABORATION ::== E_ATTR_E ELABORATION
ELABORATION ::== EVENT_NAME CAUSE
ELABORATION ::== PARALLEL EXPLANATION
ELABORATION ::== PARALLEL PARALLEL

EXEMPLIFICATION ::== E_ISA_E PARALLEL
EXEMPLIFICATION ::== E_ATTR_E I_ATTR_E
EXEMPLIFICATION ::== ELABORATION ELABORATION
EXEMPLIFICATION ::== ELABORATION PARALLEL
EXEMPLIFICATION ::== CAUSE PARALLEL

EXPLANATION ::== CAUSE ELABORATION
EXPLANATION ::== PARALLEL E_ISA_E
EXPLANATION ::== CAUSE I_ATTR_I
EXPLANATION ::== SUCCEED_FAIL S_RULE

GENERALIZATION ::== ELABORATION PARALLEL
GENERALIZATION ::== ELABORATION ELABORATION

PARALLEL ::== ELABORATION ELABORATION
PARALLEL ::== I_ISA_E I_ISA_E
PARALLEL ::== E_ATTR_E E_ATTR_E (E_ATTR_E)*
PARALLEL ::== E_ATTR_E E_ATTR_E (CAUSE)*
PARALLEL ::== I_ATTR_I I_ATTR_I (I_ATTR_I)*
PARALLEL ::== S_RULE S_RULE
PARALLEL ::== PRECONDITION PRECONDITION

CAUSE ::== E_ISA_E S_RULE
CAUSE ::== E_ATTR_E S_RULE
CAUSE ::== E_ATTR_E E_ISA_E
CAUSE ::== EVENT EXPLANATION
CAUSE ::== PARALLEL S_RULE
CAUSE ::== ELABORATION S_RULE

Terminals are single sentences or parts of the CM
E_ISA_E ::== ENTITY TYPE1 ISA ENTITY TYPE2 (schema)
I_ISA_E ::== INSTANCE ISA ENTITY TYPE (mixed)
E_ATTR_E ::== ENTITY TYPE1 ATTR ENTITY TYPE2
I_ATTR_E ::== INSTANCE ATTR ENTITY TYPE
I_ATTR_I ::== INSTANCE ATTR ENTITY TYPE
EVENT ::== event name or type of event
PRECONDITION ::== precondition in an event
(SUCCEED_FAIL) ::== (the rule will succeed)|(the rule will not hold)
(SUCCEED_FAIL) ::== (the attributes will hold)|(the attributes will not hold)
S_RULE ::== (STATIC | DYNAMIC) rule
D-RULE ::== DEDUCTION rule

 The above discourse grammar describes the connection between a conceptual model
and a discourse form. This means that the user's question together with the available
conceptual model will create a discourse according to Hobbs' classification of discourse
structure.
 The discourse grammar is almost executable as it stands in Prolog, only some minor
syntactic changes are needed. The problem is then that the grammar will overgenerate
and that it does not have a control mechanism. This control mechanism will be created
by using the same method which was used for analysing the discourses and by
implementing features and control predicates.

4.2. The discourse grammar and the control of the generation
The implementation language is Prolog, which is well-suited both for parsing and for
generation of natural language. A first implementation using a subset of the discourse
grammar has been carried out. The discourse grammar is a so called Definite Clause
Grammar, DCG, (Pereira & Warren, 1980; Clocksin & Mellish, 1984) and is executed
and controlled by the Prolog interpreter. The execution of the grammar is performed
backwards. The terminals consist of the selected information for each question. Each
terminal consists of a single sentence at either schema, instance or mixed level. Further
more various features and predicates of the grammar are implemented to control the
generation.
 The features with the values i,e,r,_ for describing entity types and instances of them.

i stands for instance level
e for entity type or schema level
r for rule
_ for the anonymous variable or irrelevant.

 The coherence relation exemplification extended with features is an example of the
above control of the grammar. The relation exemplification is a divider between
explanation at the schema level, and explanation at the instance level i.e. features entity
type e or instance i. Another example is the elaboration relation which can be
performed both at schema and instance level, but it has to be kept either of the ways.
These two cases are seen in the extract of the discourse grammar below.

Predicates
The predicate not_occur/2 checks whether any part of the terminals are used more
than once for generation, i.e. none of the terminals occur more than once in the
discourse tree.
The predicate same/2 is used to check if two clauses has any connection to each other
at all, for example in elaboration, to talk about the same entities.
When a piece of the discourse tree is generated it is checked for any violations of the
generation rules.

Extract from the discourse grammar which generates the discourse below
discourse(exemplification(E))

--> exemplification(_,E).
exemplification(_,(elaboration(E) & parallel(P)))

--> elaboration(e,E), parallel(i,P),{not_occur(E,P),!}
elaboration(i,i_isa_e(I1) & i_attr_i(I2))

--> [I1,I2],{i_isa_e(I1), i_attr_i(I2),not_occur(I1,I2),same(I1,I2)}.
elaboration(i,i_isa_e(I) & parallel(P))

--> [I],{i_isa_e(I) , parallel(i,P),not_occur(I,P)} .
parallel(e,(e_attr_e(E1) & e_attr_e(E2)))

--> [E1,E2],{e_attr_e(E1), e_attr_e(E2),not_occur(E1,E2),same(E1,E2)}.
parallel(i,elaboration(I1) & elaboration(I2))

--> elaboration(i,I1), elaboration(i,I2),{not_occur(I1,I2),!}.

Example of a generation
Question: What is a person ?
?- list_db. selected sentences
[some,persons,are,owners]
[carl,is,a,person]
[lisa,is,a,person]
[carl,has,an,driving_licence,121]
[lisa,has,an,address,211]
[a,person,can,have,exactly,one,address]
[a,person,can,have,exactly,one,driving_licence]
 yes
?- discourse(TREE,NL).
 TREE = exemplification(elaboration(e_isa_e(
 [some,persons,are,owners])
 &
 parallel(
 e_attr_e(
 [a,person,can,have,
 exactly,one,address])
 &
 e_attr_e(
 [a,person,can,have,
 exactly,one,
 driving_licence])))
 &
 parallel(elaboration(
 i_isa_e([carl, (is),a,
 person]) &
 i_attr_i(
 [carl,has,a,
 driving_licence,121]))
 &
 elaboration(
 i_isa_e([lisa, (is),a,
 person]) &
 i_attr_i(
 [lisa,has,an,address,
 211])))),

 discourse 1)
 NL = [[some,persons,are,owners],

[a,person,can,have,exactly,one,address],
 [a,person,can,have,exactly,one,driving_licence],
 [carl, (is),a,person],[carl,has,a,driving_licence,121],
 [lisa, (is),a,person],[lisa,has,an,address,211]]

The example above gives an idea how it would technically be possible to achieve the
above proposal and how the discourse tree would look like.

User modeling
One idea for delimiting the amount of generated text is to have a user model, such that
the question of the user will trigger two actions: First to update the user model and
second to select information from the knowledge base, i.e. the conceptual model, to
answer the question. This is discussed in detail in (Dalianis, 1992)
 The selected user model will be instances of a user theory. Thus a set of rules will be
triggered by a set of inputs from the user and consequently a user model will be built.
The user modeling system described below will give us a dynamic user model such that
the answers will be dependent on the current dialogue with the user and level of the
user.

knows
nothing

rule

static
rule

deduction
rule

dynamic
rule

entity
type

attribute isa

event

preconditionreplace

insert

novice

expert
knowledge
level

instance

Fig. 9 Concept generalization hierarchy of the conceptual modeling language structure

 A modified version of the hierarchy which models various users in Finin (1989) will
be used for giving a description of the surroundings of the conceptual schema to the
user in the right knowledge level. In the hierarchy we will use a rough division between
novice and expert users, but the hierarchy could also be made finer grained with
additional user levels. For example: beginner and intermediate user. It may be
common that a user may have local expertise in one area but be a novice in another
area.
 What we model is the user's knowledge of the existence of various concept in the
conceptual modeling language. We can consider that the knowledge of concepts above
the knowledge level is the novice's knowledge and the knowledge of concepts below
the knowledge level is the expert's knowledge. But of course knowledge in expert
concepts implies knowledge in novice concepts.
 The knowledge level is a level which indicates a point, at which a novice user
becomes an expert user. The knowledge level is drawn in this way because of the
division between the general concepts known by a domain expert or an end user and the
conceptual modeling formalism known by an expert. The knowledge level is not
experimentally tested and is rather arbitrary. It could be adjusted empirically.

5. Conclusions

Support tools for conceptual modeling lack natural language generation functions. In
this paper we have argued for the need of natural language generation as a support tool
for conceptual modeling.
 The paper proposes a set of appropriate questions which could be posed by the user
and a set of suitable natural language discourses to answer these questions. From the
proposed discourses a discourse grammar is generalized. The discourse grammar
connects a conceptual model to a discourse structure. A natural language generation
system built on this grammar is suggested. The goal of the system is to improve the
validation of a conceptual model.
 The purpose of a natural language discourse in this setting is to answer a question
from a user in a more satisfying and contextually sensitive way than a single sentence
or a set of unordered sentences would. We know that natural language lowers the
conceptual barrier for the user and that a natural language discourse gives a better
comprehension, since the receiver of the discourse when reading the linear text will try
to identify the higher order structure of the text, according to Anderson (1985), and
consequently the conceptual model.
 Future research will be to implement the proposed system and to extend the grammar
for more cases and then test the system to determine which discourse structures the
users require.
 I would conclude with: Interpreted data gives information, reasoning about
information gives knowledge and knowledge expressed in natural language gives
understanding !

Acknowledgements

I would like to thank my advisor Carl Gustaf Jansson and my thesis committee: Janis
Bubenko, Carl Brown and Östen Dahl for generously contributing of their knowledge
in their fields and for their valuable comments. I would also like to thank Paul
Johannesson and Rolf Wohed and others in the SYSLAB research group for interesting
discussions which contributed to this paper and thank, Guy Ridley, for checking the
English.

6. References

Anderson J.R. 1985. Cognitive Psychology and Its Implications, Carnegie-Mellon
University, W.H. Freeman and Company .

Appelt, D.E. 1985. Planning English Sentences, Cambridge University Press.
Black, W.J. 1987. Acquisition of Conceptual Data Models from Natural Language

Descriptions, In The Proceedings of The Third Conference of the European Chapter
of Computational Linguistics , Copenhagen, Denmark.

Boman, M. et al, 1991. Conceptual Modeling, Department of Computer and Systems
Sciences, Stockholm University.

Bubenko, J. & Lindencrona, E. 1984, Konceptuell modellering - Informationsanalys,
Studentlitteratur, Lund, (in Swedish)

Bubenko, J. 1986. Information System Methodologies - A Research View, SYSLAB Report
no 40, Department of Computer and Systems Sciences, Stockholm University, Sweden.

Cauvet, C. et al. 1991. ALECSI: An expert system for requirements engineering, in
Proceedings of Computer Aided Information System Engineering, CAISE-91, Eds. R.
Andersen et al, Trondheim.

Chen, P. P-S. 1983. English Sentence Structure and Entity Relationship Diagrams,
Information Sciences 29, p.p. 127-149.

Clocksin, W.F. & Mellish, C.S. 1984. Programming in Prolog, Springer Verlag.
Dalianis, H. 1989. Generating a Natural Language Description and Deduction from a

Conceptual Schema, SYSLAB Working Paper no. 160, Department of Computer and
Systems Sciences, Royal Institute of Technology.

Dalianis, H. 1990. Deep generation strategies and their application for creating alternative
descriptions form conceptual schemas, SYSLAB Working paper no. 177, Department
of Computer and Systems Sciences, Royal Institute of Technology.

Dalianis, H. 1992. User adapted natural language discourse generation for validation of
conceptual models, (licentiate thesis), SYSLAB Report no 5, Department of
Computer and Systems Sciences, Royal Institute of Technology.

De Troyer, O. et al, 1988. RIDL* on the CRIS case: A workbench for NIAM,Computerized
Assistance During the Information Systems Life Cycle.T.W Olle, et al. (eds).Elsevier
Science Publishers B.V North Holland.

Finin, W.F. 1989. Gums - A General User Modeling Shell, in User Modeling in Dialog
Systems (eds) A Kobsa , W. Wahlster, Springer Verlag.

Hagelstein, J. 1988. Declarative approach to information systems requirements, Knowledge
Based Systems, Butterworth, Vol 1, No 4, 1988.

Hobbs, J.R. 1985. On the Coherence and Structure of Discourse, Report No. CSLI-85-37,
October 1985.

Hobbs, J .R. 1990. Literature and Cognition, CSLI Lecture Notes Number 21, Center for
the Study of Language and Information.

Hovy, E.H. 1988. Planning Coherent Multisentential Text, Proceedings of the 26th Meeting of
the ACL, Buffalo, New York, 1988.

Johannesson, P. 1990. MOLOC: Using Prolog for Conceptual Modeling, Proceedings of
the International Conference on Entity-Relationship Approach, North Holland.

Kass, R. & Finin, T. 1988. Modeling the User in Natural Language Systems, J. of
Computational Linguistics, Vol 14, No 3, Sept 1988.

Kuntz, M. & Melchert, R. 1989. Ergonomic Schema Design and Browsing with More
Semantics in the Pasta-3 Interface for E-E DBMSs, Proceedings of the 8th
International Conference on Entity-Relationship Approach, Ed F.H. Lochovsky,
Toronto, Canada.

Mann, W. C. 1984. Discourse Structures for Text Generation, Proceedings of the 22nd
annual meeting of the Association of Computational Linguistic, Stanford, CA,

Mann, W. C. & Thompson, S.A, 1988. Rhetorical Structure Theory: Towards a Functional
Theory of Text Organization, In TEXT Vol 8:3, 1988.

McKeown, K.R. 1985a. Textgeneration: Using discourse Strategies and focus constraints to
generate natural language text, Cambridge University Press.

McKeown, K.R. 1985b. Discourse Strategies for Generating Natural Language Text, Artificial
Intelligence, vol 27 no 1, Sept 1985.

Paris, C. 1985. Description Strategies for naive and expert users, Proc. of the 23rd Annual
Meeting of the Association of Computational Linguistics.

Paris, C. 1988. Tailoring Object's descriptions to a User´s Level of Expertise, J. of
Computational Linguistics, Vol 14, No 3, Sept 1988.

Pereira, F.C.N & Warren,D.H.D, 1980. Definite Clause Grammars for Language Analysis -
A Survey of the Formalism and a Comparison with Augmented Transition Networks. J.
of Artificial Intelligence 13, 1980, pp 231-278.

Rankin, I. 1989. The Deep Generation of Text in Expert Critiquing Systems, Licentiate
Thesis No 184, Linköping University, 1989.

Tauzovich, B. 1989. An Expert System for Conceptual Data Modeling, Proceeding of the
Entity Relationship Approach Toronto, Canada.

Wohed, R 1988. Diagnosis of Conceptual Schemas, SYSLAB report no 56, Department of
Computer and Systems Sciences, Royal Institute of Technology and Stockholm
University 1988.

