
1

Published in: The proceedings of the NLDB'95, First International Workshop on the Applications of
Natural Language to Data Bases, pp 135-149, Versailles, France, June 28-29, 1995.

Aggregation, Formal Specification and
Natural Language Generation

Hercules Dalianis

Department of Computer and Systems Sciences
The Royal Institute of Technology and

Stockholm University
Electrum 230, S-164 40 Kista

Sweden
email: hercules@dsv.su.se

Abstract

In this paper we show how to use the so-called aggregation technique to remove
redundancies in the fact base of a formal specification. Redundancies are always present
in formal languages to make them explicit and non-ambiguous The objective is to generate
non-redundant natural language text. The aggregation rules preserves the meaning. The
formal specification is expressed in the Delphi language, which is a sort of conceptuel
modelling language. A prototype of the natural language aggregation generation system is
implemented in Prolog.

Résumé

Dans cet article nous montrons comment utiliser la technique dite d'agrégation pour
extraire la redondance de la base de fait d'une spécification formelle. Des redondances
sont toujours présentes dans les langages formels afin de les rendre explicites et non
ambigus. L'objective est de générer un texte en langage naturel non redondant. Les règles
d'agrégation préservent le sens. La spécifcation formelle est exprimée dans le langage
Delphi, qui est une sorte de langage de modélisation conceptuelle. Un prototype du
système de génération de langage naturel par agrégation est implémenté en Prolog.

2

1. Introduction

Natural language generation for validation of formal specifications is a well-known
concept in the formal specification community, [Swart82,Rolla92,Dalia92], however
before generating natural language (NL) from a formal specification it is necessary to
carry out a number of tasks on the formal specification.

First is content selection carried out, i.e. what to say , from the abundant knowledge
base, then planning and organization of the information content. The text plan decides the
order in which the sentences should be generated to make the text coherent, then follows
the sentence planning and finally the surface generation where it has to be decided how to
say it, i.e. the realization of the syntactic structures and lexical choices, but though all
this is carried out certain information may be redundant or duplicated. The nature of
formal languages is that they need to be very explicit while humans try to organize their
facts conceptually and much information is implicit.

However there is a technique called aggregation in natural language generation
developed in [Dalia93] and [Dalia95b] which can be used for removing redundancies in
the fact bases of formal specifications. The aggregation process takes place before the
surface generation. The aggregation is part of the sentence planning.

Aggregation is the process of removing redundant information in a text without losing
any information. People do aggregation all the time to make natural language expressions
shorter, non-redundant and easy read. Aggregation rules, which apply before realization
to semantic objects, cluster common objects together and makes the text easier to read and
consequently easier to understand.

The following example illustrates the effect of aggregation.
Before aggregation:

Leo has a powerbook. Chrysanne is a professor. Hercules is a student.

Richard is a student. Hercules has a powerbook. Richard has a book.

Chrysanne has a pen. Leo is a student.

After aggregation =>

Hercules, Leo and Richard are students.

Hercules and Leo have powerbooks

Richard has a book.

Chrysanne is a professor and has a pen.

The aggregated natural language text looks nicer and is easier to read. This aggregation
is just one of several possibilities to aggregate the text.

3

2. Previous research and systems.

There are not many requirements engineering tools which uses natural language,
examples are: AMADEUS, [Black87] and ALECSI, [Cauv91]. These utilizes a
combination of graphics and single sentence parsing and generation. An other tool is
VINST VIsual and Natural language Specification Tool [Engst91, Preif92, Dalia95a].
VINST is a multi-modal specification and validation tool, specifically for the functionality
of telecom services. The users of this tool are intended to be customers and salesmen of
telephone systems. The specification is carried out with a Visual Language and a
restricted Natural Language (NL).

In this paper we are going to use the aggregation technique for making the output from
a natural language generator more pleasant to read. The domain is the Delphi formal
specification language in the Delphi Tool, [Ridle94]. The Delphi Tool is a requirements
engineering tool and contains graphical editors and an environment of Interpreters and
Theorem provers. The intended users of the Delphi Tool are system developers.

The Delphi language has mainly been used for specifying the functionality of telecom
services. The Delphi language contains a Conceptual Model for the static descriptions and
First Order Predicate Logic for the dynamic descriptions. The Conceptual Model contains
entities, attributes, states and relations.

3. The aggregation rules

In linguistics, the results of aggregation is called ellipsis [Quirk72]; the term originates
from the Greek word ellipsis, meaning missing or omission.

In [Quirk72] the strict sense of ellipsis is defined as words being elided in a text only if
they are recoverable. The motivation of ellipsis is to reduce redundancy and avoid
repetition. Also included in [Quirk72] is a careful study of ellipsis; e.g., combined and
segregatory coordination, what we call predicate and direct object grouping, as well as,
ellipsis of subject and auxiliaries, what we call subject and predicate grouping in
[Dalia93] and [Dalia95b], other aggregation rules are predicate grouping, subject
grouping, clause, and also various semantic aggregation rules.

Aggregation is basically carried out by a set of grouping rules, which make syntactic
operations on the text. Aggregation is when the aggregated information can be recon-
structed. Aggregation (at least non semantic aggregation) should always be carried out,
since no information content is lost. The only reason for not carrying out aggregation is
stylistic.

4

Here are the abbreviations of the categories of a clause
S = Subject
P = Predicate

Conn = Connectives i.e. And, Or, Xor.....

Do = Direct object
Pc = Predicative Subject Complement

Xor = exclusive or

E.g. A normal English clause has the following order S P Do.
Here follows a more exact definition of predicate and direct object grouping (PDO-
grouping) and subject and predicate grouping (SP-grouping).

3.1. Predicate and direct object grouping

Definition Predicate and Direct Object grouping, (PDO-grouping)

S1PDo Conn S2PDo Conn ...Sn PDo => S1 Conn S2 Conn .. SnPDo

An example before aggregation
John is a student
Mary is a student

After aggregation with Predicate and Direct Object grouping =>
John and Mary are students

Where the grouped phrase is: are students .

3.2. Subject and predicate grouping

Definition Subject and Predicate grouping, (SP-grouping)
SP(Do1 Xor Pc1) Conn SP(Do1 Xor Pc2 Conn) ...SP (Don Xor Pcn)

=> SP(Do1 Xor Pc1) Conn (Do2 Xor Pc2) Conn .. (Don Xor Pcn)

An example before aggregation
John is a boy
John is tall

After aggregation with Subject and Predicate grouping =>
John is a boy and tall
Where the grouped phrase is: John is .

Subject and predicate grouping works well also with negation
John did not drink a coke and eat a sandwich
John did neither drink a coke nor eat a sandwich

5

3.3. Grouping rules

The grouping rules, PDO grouping and SP grouping can be generalized to a set of
mechanical reducing rules, i.e. if there is a redundant object one must then reduce, but
when there is too many objects one may consider either a tabular form or some stylistic
rules.

4. The solution

Here follows a suggestion on how to use the aggregation technique to make the
generated natural language text non-redundant and easy to read. In our proposal the
generated text comes from a specification expressed in the Delphi language.

The prototype is implemented in AAIS-Prolog on a Macintosh, see figure 1, below we
explain the function of the natural language generation system.

Aggregated
text

Aggregation
rules

Surface
grammar

Text
planner

Delphi
specification

Translator :
Delphi to
Prolog format

Figure 1. Overview of the natural language generation system

The dotted boxes are not implemented yet. We can pretend that the Delphi textual form
is translated to a Prolog readable format and the text planner decides what should be
included in the text and creates a text plan. A text plan contains a set of clauses. (See
below). The content of the text plan is dependant on what the user asks for.

The aggregation module receives a text plan, sorts the input elements, applies two
aggregation rules (SP and PDO grouping) and one pronominalization rule on the sorted
text plans and then the surface generator finally generates the NL text. The surface
grammar is a DCG-grammar, [Perei80,Clock84] (which still is little rough).

The representation used for the clauses in a text plan is a sort of conceptual modeling
representation with entities, relations, states and attributes and a syntax close to Prolog
syntax. The Delphi language has an internal language used in the Delphi Tool called
Delphi textual form. The idea is that it will be easy to implement the translator from
Delphi textual form to the Prolog format.

6

The syntax of the text plan representation follows below
Text plan ::== {p1 & p2 &pn}
p ::== f(Tense,Predicate,Arg,Arg).
Tense ::== pres | fut | past
Predicate ::== isa | state | poss | work_action | walk_action |...
Arg ::== john | mary | subscriber | phone number busy | idle | ...

To create a text plan from the fact base of the Delphi textual form is rather straight
forward, this has been made previously with other formal specifications languages,
[Black87, Dalia95a]. If the fact base is very large, one may constraint it by generating
only what has been changed between two executions in the simulator or by what the user
asks for.

Below, in figure 2, follows an example in the telecom domain describing the function-
ality of telecom services. The static part of the example in the telecom domain is
expressed in a Conceptual Model in the Delphi language. Static parts of specifications are
expressed in Delphi Conceptual models.

network[1]

subscriber[0..1000]
#phonenumber

XOR
idle

busy

ringtone busytone

ringsignal dialtone

XOR

mobile_subscriber

isA

calling

[1]

[1]

Figure 2. The Delphi conceptual model, which is the static part of the specification.

7

The above Delphi (static) conceptual model can be paraphrased manually to Natural
Language and the reading is:

Subscribers are part of a network. Mobile subscribers are subscribers. Subscribers can
either be in the state idle or busy. The state busy can either be in the substates ringtone,
ringsignal, busytone or dialtone. When one subscriber is calling an other subscriber then
the first subscriber has ringtone and the other subscriber has ringsignal.

The dynamic part of the example in the telecom domain is represented in a first order
predicate logic language, see example 1 below. Dynamic parts of specifications in Delphi
are expressed in a first order predicate logic language.

BEHAVIOUR
RULES

WHEN offHook(x) is DETECTED
IF subscriber(x) AND
 idle(x) CONCLUDE

dialTone(x);
IF subscriber(x) AND
 subscriber(y) AND
 calling(y,x) CONCLUDE

inspeech(x,y);
END;

Example 1.

If parts of the conceptual model, in figure 2 above, is instantiated one obtains a fact
base, see example 2 below, which can be used by the simulator for executing the
specification. The fact base is expressed in Delphi textual form.

Instantianted model (Fact base):
INSTANTIATION example

OF SPECIFICATION network
ENTITIES
John:subscriber
phonenumber = 100;phonenumber = 101
 IS

STATES
idle;

Mary:subscriber
phonenumber = 200
 IS

STATES
idle;

Tom:subscriber
phonenumber = 300
IS

STATES
idle;

END;

Example 2.

8

The above fact base in Delphi textual form is at present manually translated to the
Prolog style representation which is given to the text planner and then to the aggregation
rules module (sentence planner) and finally to the surface generator.

4.1. Ordering

One part of the text planning is to order the input propositions. The text plan contains
clauses which have the format:

f(T,Pred,Arg1,Arg2)

The clauses can be sorted according to the keys Pred, Arg1, and Arg2. The keys are
given various priority or weight. The sorting is made on the importance of the different
predicates according to [Dalia93] as well as to [Patta92]. In [Dalia93] the natural ordering
was made in texts over input propositions generated by test persons, in a study of total 15
test subjects.

isa > state > poss > alphabetical order

The weights which has been used in this paper are (1,2,3) and (2,1,3) given to the keys
Pred, Arg1, Arg2 respectively. (The used orders are still under investigation in
[Dalia95b]). The natural language generation prototype has the above sorting mechanism
and a fixed order of applying the aggregation rules to SP grouping and PDO grouping .

4.2. No aggregation

Below, in example 3, we see an NL-paraphrase from the text planner with ordering
(1,2,3) but without aggregation (no sentence planning) i.e. pure surface generation.

?- paraphrase(f(pres,isa,john,subscriber) & (text plan)
f(pres,state,john,idle) &
f(pres,poss,john,f(pres,attr,phonenumber,100)) &
f(pres,poss,john,f(pres,attr,phonenumber,101)) &
f(pres,isa,mary,subscriber) &
f(pres,state,mary,idle) &
f(pres,poss,mary,f(pres,attr,phonenumber,200)) &
f(pres,isa,tom,subscriber) &
f(pres,state,tom,idle) &
f(pres,poss,tom,f(pres,attr,phonenumber,300))).

john is a subscriber
 and mary is a subscriber
 and tom is a subscriber
 and john is idle
 and mary is idle
 and tom is idle

9

 and john has a phonenumber 100
 and john has a phonenumber 101
 and mary has a phonenumber 200
 and tom has a phonenumber 300.
 yes

Example 3.

We observe that the above generated NL-text is redundant. Therefore we now activate
the aggregation module

4.3. Aggregation

Below, in example 4, we have a NL-paraphrase from the text plan with aggregation
(SP- and PDO-grouping rules) we show also the sentence plan i.e. the output from the
aggregation module (sentence planner) which is given to the surface generator.

?- subject_pred. (activates SP-grouping)
 yes
?- predicate_do. (activates PDO-grouping)
 yes
?- pronoun. (activates pronominalization)
 yes
?- paraphrase(f(pres,isa,john,subscriber) & (text plan)

f(pres,state,john,idle) &
f(pres,poss,john,f(pres,attr,phonenumber,100)) &
f(pres,poss,john,f(pres,attr,phonenumber,101)) &
f(pres,isa,mary,subscriber) &
f(pres,state,mary,idle) &
f(pres,poss,mary,f(pres,attr,phonenumber,200)) &
f(pres,isa,tom,subscriber) &
f(pres,state,tom,idle) &
f(pres,poss,tom,f(pres,attr,phonenumber,300))).

*Spy: | |(4:5) Call: surface(f(pres, isa, john & mary & tom,subscriber) &
 f(pres, state, pro(john & mary & tom),idle) &
 f(pres, poss, john, (sentence plan)
 f(pres, attr, phonenumber, 100 & 101)) &
 f(pres, poss, mary,
 f(pres, attr, phonenumber, 200)) &
 f(pres, poss, tom,
 f(pres, attr, phonenumber, 300)),
 _2): n

10

john
 and mary
 and tom are subscribers
 and they are idle
 and john has phonenumbers 100
 and 101
 and mary has a phonenumber 200
 and tom has a phonenumber 300.
 yes

Example 4.

Previously, in example 4, we have seen the aggregated and non-redundant NL-text,
which is rather easy to read. Then we execute an event in the Delphi simulator.This is
carried out by giving the event(offhook(john)) to the Delphi simulator which together
with the dynamic rules changes the fact base in example 2 above to the one below in
example 5. (John becomes busy (he receives dialtone))

Instantianted model (Fact base):
INSTANTIATION example

OF SPECIFICATION network
ENTITIES
John:subscriber
phonenumber = 100;phonenumber = 101
 IS

STATES state change in fact base
busy; <- from idle -> to busy

Mary:subscriber
phonenumber = 200
 IS

STATES
idle;

Tom:subscriber
phonenumber = 300
IS

STATES
idle;

END;

Example 5.

The above fact base, see example 5, which is expressed in Delphi textual form is
manually translated to the Prolog style format and given to the current NLG-system, see
example 6 below.

11

Below we see NL-paraphrase with aggregation
?- paraphrase(f(pres,isa,john,subscriber) & (text plan)

f(pres,state,john,busy) &
f(pres,poss,john,f(pres,attr,phonenumber,100)) &
f(pres,poss,john,f(pres,attr,phonenumber,101)) &
f(pres,isa,mary,subscriber) &
f(pres,state,mary,idle) &
f(pres,poss,mary,f(pres,attr,phonenumber,200)) &
f(pres,isa,tom,subscriber) &
f(pres,state,tom,idle) &
f(pres,poss,tom,f(pres,attr,phonenumber,300))).

*Spy: | |(4:5) Call: surface(f(pres, isa, john & mary & tom, subscriber) &
 f(pres, state, john, busy) &
 f(pres, state, mary & tom, idle) &
 f(pres, poss, john, (sentence plan)
 f(pres, attr, phonenumber, 100 & 101)) &
 f(pres, poss, mary,
 f(pres, attr, phonenumber, 200)) &
 f(pres, poss, tom,
 f(pres, attr, phonenumber, 300)),
 _2): n
john
 and mary
 and tom are subscribers
 and john is busy
 and mary
 and tom are idle
 and john has phonenumbers 100
 and 101
 and mary has a phonenumber 200
 and tom has a phonenumber 300.
 yes

Example 6.

In example 6, above, we observe that the changing of the fact base blocks the
pronominalization. The subscriber John becomes busy and this blocks him from being
grouped together with Mary and Tom.

In example 7, who follows, we have changed the order of the input propositions from
having the weight in sorting from (1,2,3) to (2,1,3) and this gives a completely different
text. The PDO-grouping rule becomes also blocked since the SP-grouping rule has
already consumed all the input for PDO-grouping. John, Mary and Tom have all their
entities, states and phonenumbers respectively attached.

12

?- paraphrase(f(pres,isa,john,subscriber) &
f(pres,state,john,busy) &
f(pres,poss,john,f(pres,attr,phonenumber,100)) &
f(pres,poss,john,f(pres,attr,phonenumber,101)) &
f(pres,isa,mary,subscriber) &
f(pres,state,mary,idle) &
f(pres,poss,mary,f(pres,attr,phonenumber,200)) &
f(pres,isa,tom,subscriber) &
f(pres,state,tom,idle) &
f(pres,poss,tom,f(pres,attr,phonenumber,300))).

*Spy: | |(4:5) Call: surface(f(pres, isa_state, john,
 subscriber & busy) &
 f(pres, poss, pro(john),
 f(pres, attr, phonenumber, 100 & 101)) &
 f(pres, isa_state, mary,
 subscriber & idle) &
 f(pres, poss, pro(mary),
 f(pres, attr, phonenumber, 200)) &
 f(pres, isa_state, tom,
 subscriber & idle) &
 f(pres, poss, pro(tom),
 f(pres, attr, phonenumber, 300)),
 _2):
john is a subscriber
 and busy
 and he has phonenumbers 100
 and 101
 and mary is a subscriber
 and idle
 and she has a phonenumber 200
 and tom is a subscriber
 and idle
 and he has a phonenumber 300.
 yes
?-

Example 7.

We see that the aggregated text above, in example 7, gives more direct information
about each object than the two previous aggregated ones, examples 4 and 6 respectively,
which gave more overview information.

13

5. Conclusions

We have in this paper showed how to use the aggregation technique for removing
redundancies in fact bases of formal specifications. This technique makes the generated
natural language text easy to read and understand since the text is organized in a
conceptual pleasant way.

Future objectives is to use the aggregation technique to remove redundancies from the
Delphi conceptual model and the dynamic rules. Some work on using aggregation rules
on dynamic rules has been carried out in [Dalia95a]. Other very important issues are the
ordering of the input propositions contra the order of applying the aggregation rules.
Which combinations of input propositions blocks aggregation and which order should the
aggregation rules have on application. This is an subject currently under investigation in
[Dalia95b]. Future studies could also be the use of cue words in e.g. examples 4 and 6,
which could be further aggregated with use of cue words (e.g. respectively)

Before aggregation
Mary has a phonenumber 200
Tom has a phonenumber 300.

After aggregation and use of a cue word =>
Mary and Tom have phonenumbers 200 and 300 respectively

6. Acknowledgements

Many thanks to Ed Hovy at Information Sciences Institute/USC for inspiring me to
write a completely new aggregation module and many thanks also to Guy Ridley,
Ellemtel Telecommunication Systems Laboratory, for introducing me to the Delphi
language and the telecom domain.

14

7. References
Black87 W.J.Black: Acquisition of Conceptual Data Models from Natural

Language Descriptions: In The Proceedings of The Third Conference of
the European Chapter of Computational Linguistics, Copenhagen,
Denmark 1987.

Cauv91 C.Cauvet et al: ALECSI: An expert system for requirements engineering,
in Proceedings of Computer Aided Information System Engineering,
CAISE-91, Eds. R. Andersen et al,Trondheim , 1991.

Clock84 W.F. Clocksin & C.S. Mellish: Programming in Prolog, Springer Verlag
1984.

Dalia92 H.Dalianis: A method for validating a conceptual model by natural
language discourse generation, CAISE-92 Int. Conf. on Advanced
Information Systems Engineering, Loucopoulos P. (Ed.), Springer
Verlag Lecture Notes in Computer Science, no 593, pp. 425-444, 1992.

Dalia93 H. Dalianis & Eduard Hovy: Aggregation in Natural Language
Generation, EWNLG-93, Proceedings of the 4th European Workshop on
Natural Language Generation, Pisa, Italy 1993. also in Trends in Natural
Language Generation: an Artificial Intelligence Perspective, Springer
Verlag Lecture Notes in Computer Science (fortcoming 1995).

Dalia95a H.Dalianis: Aggregation in the NL-generator of the VIsual and Natural
language Specification Tool, in the proceedings of
The Seventh International Conference of the European Chapter of the
Association for Computational Linguistics, (EACL-95), Student Session,
pp 286-290, Dublin, Ireland, Marsh 27-31, 1995.

Dalia95b H.Dalianis: The Effects of Ordering on Aggregation, in Preparation, 1995.
Engst91 M.Engstedt: A flexible Specification Language using Natural Language

and Graphics, Master's Thesis Report, The Centre of Cognive Science,
University of Edinburgh, Sept 1991.

Patta92 T. Pattabhiraman: Aspects of Salience in Natural Language Generation,
Ph.D thesis, Simon Fraser University, British Columbia, Canada, 1992

Perei80 F.C.N Pereira & D.H.D. Warren: Definite Clause Grammars for
Language Analysis - A Survey of the Formalism and a Comparison with
Augmented Transition Networks. J. of Artificial Intelligence 13, pp 231-
278.1980.

Preif92 S. Preifelt & M. Engstedt: Resultat från VINST projektet, (In
Swedish, Results from the VINST project), Ellemtel Telecommunication
Systems Laboratory, Älvsjö, Sweden, 1992.

Quirk72 R. Quirk et al: A grammar of contemporary English, Longman Group
Limited, 1972.

15

Ridle94 G.Ridley: Formal Methods for Requirement Specification - A Practical
Approach using the EUA-Delphi Technology, Ellemtel Utvecklings AB,
1994.

Rolla92 C.Rolland & C.Proix: A Natural Language approach for Requirements
Engineering, CAISE-92 Int. Conf. on Advanced Information Systems
Engineering, (Ed.) P. Loucopoulos, Springer Verlag Lecture Notes in
Computer Science, no 593, pp. 257 - 277, 1992.

Swart82 B.Swartout: GIST English Generator: In Proceedings of AAAI-92,
American Association of Artifical Intelligence, Carnegie-Mellon University
and University of Pittsburgh, Pittsburgh, Pennylvania, 1982.

