
 1

Department of Linguistics
Stockholm University
January 2004

 FarsiSum

A Persian text summarizer خلاصه نويس متون فارسی

Master Thesis 20 credits
Nima Mazdak nima.mazdak@comhem.se

 2

Abstract
FarsiSum is an attempt to create a text summarization system for Persian, based upon
SweSum. SweSum is an automatic text summarizer for Swedish that is also available for
Norwegian, Danish, Spanish, English, French and German texts. SweSum is supposed to
work for any language in a so called generic mode. The program in the generic mode
uses only general extraction algorithms in the summarization, and these do not refer to
any language specific information.
The aim of this study is

• To investigate how SweSum behaves when applied to a text which is not
transcribed in a Roman writing system?

• To design and implement FarsiSum by using the methods and algorithms
implemented in the SweSum project.

• To evaluate FarsiSum.

A live version of the automatic summarizer FarsiSum can be found at
http://www.nada.kth.se/iplab/hlt/farsisum/index-farsi.html

 3

TABLE OF CONTENTS

Abstract... 2
1. INTRODUCTION... 5

1.1 PURPOSE .. 5
1.2 METHOD .. 5

2. BACKGROUND ... 5
2.1 SUMMARIZATION PROCESS... 6

2.1.1 Topic Identification... 6
2.1.2 Interpretation.. 6
2.1.3 Generation.. 7

2.2 SUMMARIZATION METHODS AND ALGORITHMS... 7
2.2.1 Sentence Selection Function for Extraction.. 8
2.2.2 Knowledge-Based Concept Counting ... 9
2.2.3 Lexical chain methods .. 10
2.2.4 Latent Semantic Analysis.. 11
2.2.5 Vector-Based Semantic Analysis using Random Indexing.. 12
2.2.6 Pronoun Resolution .. 12
2.2.7 Machine Learning Techniques ... 13
2.2.8 SUMMARIST .. 14

3. SWESUM... 15
3.1 ARCHITECTURE .. 15
3.2 HTTP... 15
3.3 WEB CLIENT .. 16

3.3.1 HTML ... 16
3.3.2 Original text.. 16
3.3.3 JavaScript ... 17

3.4 SUMMARIZER ... 17
3.4.1 Lexicon ... 17
3.4.2 First pass .. 17
3.4.3 Second pass .. 20
3.4.4 Third pass ... 21

3.5 EVALUATION.. 21
3.6 NOTES ON SWESUM ... 23

3.6.1 Summarization algorithms.. 23
3.6.2 Program Structure.. 23
3.6.3 HTML parser .. 23
3.6.4 Programming language.. 23

4. FARSISUM.. 24
4.1 PERSIAN LANGUAGE .. 24

4.1.1 Writing System.. 24
4.1.2 Numbers.. 25
4.1.3 Word Boundaries.. 26
4.1.4 Acronyms and Abbreviations.. 26
4.1.5 Personal Pronouns ... 27

4.2 ENCODINGS.. 28
4.2.1 The ISO 8859.. 28
4.2.2 Unicode & UTF-8... 28

4.3 IMPLEMENTATION OF FARSISUM.. 28
4.3.1 User Interface ... 29
4.3.2 The Stop-List... 29
4.3.3 Pass I & II .. 30

 4

4.3.4 Pass III.. 31
4.4 NOTES ON THE CURRENT IMPLEMENTATION .. 31

4.4.1 Word Boundary Ambiguity ... 31
4.4.2 Ambiguity in morphology ... 31
4.4.3 Word Order .. 32
4.4.4 Phrase Boundaries ... 32
4.4.5 Possessive Construction ... 32
4.4.6 Light Verb Construction ... 33

5 EVALUATION ... 33
RESULTS... 34

6 FUTURE IMPROVEMENTS.. 35
6.1 SWESUM .. 35

6.1.1 Methods .. 35
6.1.2 HTML Parser.. 36
6.1.3 Structure ... 37

6.2 FARSISUM .. 38
7 CONCLUSION ... 39
8 RUN THE PROGRAM .. 40
REFERENCES ... 42
APPENDIX A: HTML, XML & XHTML ... 44

HTML.. 44
XML .. 45
XHTML... 45

APPENDIX B: USER INTERFACE .. 46
APPENDIX C: RESULTS FROM THE FIELD TEST .. 47
APPENDIX D: THE STOP-LIST... 48
APPENDIX E: PERSIAN ARABIC UNICODE.. 48
APPENDIX F: A SUMMARY SAMPLE CREATED BY FARSISUM .. 50

THE SUMMARY (30%) .. 50
THE ORIGINAL TEXT .. 51

 5

1. Introduction

1.1 Purpose
The aim of this thesis is to implement and evaluate a Persian text summarizer by using
the techniques and algorithms developed in the SweSum project and by adding some new
modules for handling of documents containing Unicode characters, since SweSum
supports only ASCII characters.

1.2 Method
FarsiSum is a HTTP client/server application programmed in Perl. It uses modules
implemented in SweSum and a Persian stop-list in Unicode format. The stop-list is a file
including the most common verbs, pronouns, adverbs, conjunctions, prepositions and
articles in Persian. The words not included in the stop-list are supposed to be nouns or
adjectives. The idea is that nouns and adjectives are meaning-carrying words and should
be regarded as keywords.
The application has been tested in a field test by several Persian speakers who had access
to a text document and three different summaries generated by different methods. The
methods used in the summaries were: with the stop-list enabled, with the stop-list
disabled, and in the generic mode implemented in SweSum.

2. Background
Automatic text summarization is a technique which automatically creates a summary of a
text. A text summarization device takes a text and produces a summary of the most
important parts of the original text.
There are two major types of text summary: abstract and extract.
Extract Summarization
The summarized text is extracted from the original text on a statistical basis or by using
heuristic methods or a combination of both. The extracted parts are not syntactically or
content wise altered.
Abstract Summarization
The summarized text is an interpretation of the original text. The process of producing it
involves rewriting the original text in a shorter version by replacing wordy concepts with
shorter ones. For example, the phrase “He ate banana, orange and pear” can be
summarized as “He ate fruit” i.e. to produce a more general concept ‘fruit’ two or more
topics, orange, banana and pear are fused together. Implementation of abstract methods
requires symbolic world knowledge which is too difficult to acquire on a large enough
scale to provide a robust summarization.

Automatic text summarization has been under development for many years, and there has
recently been much more interests in it due to the increased use of Internet. For example
this technique can be used:

• To summarize news to SMS or WAP1-format for mobile phone/PDA2.

1 Wireless Application Protocol
2 Personal Digital Assistance

 6

• To let a computer synthetically read the summarized text. Written text can be too
long and tedious to listen to.

• In search engines, to present compressed descriptions of the search results (see the
Internet search engine Google).

• In keyword directed news subscriptions of news which are summarized and sent
to the user (see Nyhetsguiden in Swedish)

• To search in foreign languages and obtain an automatically translated summary of
the automatically summarized text.

Many different approaches have been proposed for text summarization. Luhn (1959) first
utilized word-frequency-based rules to identify sentences for summaries, based on the
intuition that the most frequent words represent the most important concepts of the text.
Edmundson (1969) incorporated new features such as cue phrases, title/ heading words,
and sentence location into the summarization process, in addition to word frequency. The
ideas behind these older approaches are still used in modern text extraction research.

2.1 Summarization process
According to Lin and Hovy (1997) there are three different steps in performing text
summarization: topic identification, interpretation and generation.

2.1.1 Topic Identification
The goal of topic identification is to identify only the most important (central) topics in
the text. Topic identification can be achieved by various techniques, including methods
based on position, cue phrases, concept counting, and word frequency.

• In some text genres, certain positions of a text such as the title, the first sentence
in a phrase, etc tend to carry important topics.

• Cue phrases such as ‘in summary’, ‘the best’, ‘in conclusion’, ‘the most
important’, ‘this article’, ‘this document’, etc can be good indicators of important
content.

• Words which are more frequent in a text (Word Frequency) indicate the
importance of content, unless they are function words such as determiner and
prepositions.

• The topics are identified by counting concepts instead of words (Concept
Frequency).

2.1.2 Interpretation
For extraction summaries, the central topics identified in the previous step are forwarded
to the next step for further processing. For abstract summaries however, a process of
interpretation is performed. This process includes merging or fusing related topics into
more general ones, removing redundancies, etc.

Example: He sat down, read the menu, ordered, ate and left. He visited the restaurant.

As mentioned earlier it is difficult to implement such systems with good results.

 7

2.1.3 Generation
The third step in the summarization process according to Lin and Hovy (1997) is the
generation of the final output (summary). This step includes a range of various generation
methods from very simple word or phrase printing to more sophisticated phrase merging
and sentence generation. The following methods might be used:
Extraction: The terms or sentences selected in the first step of summarization are printed
into the output.
Topic lists: Lists of the most frequent keywords or interpreted fuser concepts are printed
into the output.
Phrase concatenation: Two or more phrases are merged together.
Sentence generation: A sentence generator produces new sentences. The input to the
generator is a list of fuser concepts and their related topics.

2.2 Summarization Methods and Algorithms
Generating a high quality summary requires NLP3 techniques such as discourse analysis,
world knowledge inference, semantic parsing, and language generation that are still under
research. As a result, most of the current automated text summarization systems produce
extracts instead of abstracts. An extract is a collection of the important sentences in a
document, reproduced verbatim (Lin 1999). There are other methods such as the Local
Salience Method, a method developed by Boguraev et al. (2001) which extracts phrases
rather than sentences or paragraphs.

In general, there are three major problems in creating extract summaries:

• Selecting the most important sentences.
• Generating coherent summaries.
• Repetitive information (redundancy) in the summary.

Much research has been done on techniques to identify the most important sentences that
summarize a text document. Sentence extraction methods for summarization normally
work by scoring each sentence as a candidate to be part of summary, and then selecting
the highest scoring subset of sentences.
Some features that often increase the candidacy of a sentence for inclusion in summary
are listed below:
Baseline: Each sentence is scored according to its position in the text. For example in the
domain of newspaper text, the first sentence gets the highest ranking while the last
sentence gets the lowest ranking.
Title: Words in the title and in following sentences are important and get high score.
Word Frequency (WF): Open class words4 (content words) which are frequent in the
text are more important than the less frequent. Sentences with keywords that are most
often used in the document usually represent the themes of the document
Indicative Phrases: Sentences containing key phrases like “this report …“.
Position Score: The assumption is that certain genres put important sentences in fixed
positions. For example, newspaper articles have the most important terms in the first four

3 Natural Language Processing
4 An open class word is a word to which an independent meaning can be assigned. Nouns, verbs and
adjectives are commonly considered open class words.

 8

paragraphs while technical documents have the most important sentences in the
conclusion section.
Query Signature: Users often have a particular topic in mind when they request
summaries. The query of the user affects the summary in that the extracted text will be
compelled to contain these words. Normalized score is given to sentences depending on
the number of query words they contain.
Sentence Length: The score assigned to a sentence reflects the number of words in the
sentence, normalized by the length of the longest sentence in the text.
Proper Name: Sentences which contain proper nouns are scored higher.
Average lexical connectivity: The number of terms shared with other sentences. The
assumption is that a sentence sharing more terms with other sentences is more important.
Numerical data: Sentences containing numerical data are scored higher than ones
without numerical values.
Proper name: Proper names, such as the names of persons and places, are often central
in news reports and sentences containing them are scored higher.
Pronoun: Sentences that include a pronoun (reflecting co-reference connectivity) are
scored higher.
Weekdays and Months: Sentences that include days of the week and months are scored
higher.
Quotation: Sentences containing quotations might be important for certain questions
from user.
First sentence: The first sentence of each paragraph is the most important sentence.

Despite the usefulness of the sentence extraction methods mentioned above, they cannot
alone produce high quality extracts.
In addition, using word-level techniques such as word frequency have been criticized in
several respects for the following reasons:

• Synonymy: one concept can be expressed by different words. For example cycle
and bicycle refer to same kind of vehicle.

• Polysemy: one word or concept can have several meanings. For example, cycle
could mean life cycle or bicycle.

• Phrases: a phrase may have a meaning different from the words in it. An alleged
murderer is not a murderer (Lin and Hovy 1997).

Furthermore, extracting sentences from a text with the statistical keyword approach often
causes a lack of cohesion. In order to improve the quality of the final summary, these
methods are normally combined with other techniques. Some of these algorithms and
methods are presented in the following section.

2.2.1 Sentence Selection Function for Extraction
Text summarization systems normally employ several independent modules to assign a
score to each sentence, and then combine the scores each sentence has been assigned, in
order to create a single score for each sentence. However it is not immediately clear how
these different scores should be combined. Various approaches have been described in
the literature. Most of them employ some sort of combination function, in which
coefficients assign various weights to the individual scores, which are then summed. The
coefficients are normally language and genre-dependent.

 9

Simple combination function is a straightforward linear combination function, in which
the coefficients of the above parameters (title, numerical data, etc.) are specified
manually, by experimentation. The sentence score is calculated then according to the
following formula:

Sentence score = ∑ CjPj (Coefficient, Parameter, j = 1...n, n = nr of parameters).

SweSum uses a simple combination function for evaluation of sentence scores and
assigns the coefficients manually. For example, the value 1000 is assigned to the baseline
parameter.
Decision tree combination function is a combination function, in which the coefficients
are automatically specified using machine learning algorithms.

2.2.2 Knowledge-Based Concept Counting
Lin (1995) presented a new method for automatically identifying the central ideas in a
text, based on a knowledge-based concept counting paradigm. According to Chin-Yew
Lin, the word frequency methods recognize only the literal word forms and miss
conceptual generalizations. For example the main topic in the sentence “John bought
some vegetables, fruit, bread, and milk.” should be groceries, but we cannot make any
conclusion about the topic of this sentence by using word counting methods. Word
counting methods miss the important concepts behind those words: vegetables, fruit, etc.
relates to groceries at the deeper level of semantics.
Concepts are generalized using concept generalization taxonomy (WordNet5). Figure 1
(a) shows a possible hierarchy for the concept Computer Company. According to this
hierarchy, if we find NEC, Compaq, IBM, in a text, we can infer that the text is about
Computer Company. And if in addition, the text also mentions Nokia, Ericsson and
Motorola, it is reasonable to say that the topic of the text is related to technical company.
Using a hierarchy, the question is now how to find the most appropriate generalization in
the taxonomy hierarchy. According to this method the nodes in the middle of the
taxonomy are most appropriate, since the very top concept is always a thing (everything
is a thing) and using the leaf concepts give us no power from generalization.
Ratio (R) is a way to identify the degree of summarization. The higher the ratio, the more
it reflects only one child. The ratio is defined with the following formula:

R = MAX (W) / SUM (W) where
W = the weight of all the direct children of a concept.

The weight of a parent concept is defined as the frequency of occurrence of a concept C
and its sub concepts in a text.
For example the Ratio (R) for the parent’s concept in the Figure 1 (b) is 6/
(1+1+6+1+1+) = 0.6 while it is 0.3 in the Figure 1 (c).

5 WordNet® is an online lexical reference system whose design is inspired by current psycholinguistic
theories of human lexical memory. English nouns, verbs, adjectives and adverbs are organized into
synonym sets, each representing one underlying lexical concept. Different relations link the synonym sets.

 10

For determination of the degree of generalization, the branch ratio threshold (Rt) is
defined. Rt serves as a cutoff point for the interestingness. If a concept’s ratio R is less
than Rt, it is an interesting concept.
For example consider Figure 1, in case (b) if the Rt = 0.4, we should choose Compaq as
the main topic instead of its parent since Rt < R. In contrast, in case (c) we should use the
parent concept Computer Company as the concept of interest.

Ratio R = 0.6 Computer Company(10)

Toshiba(1) NEC(1) Compaq(6) Apple(1) IBM(1)
(b)

Computer Company

Toshiba NEC Compaq Apple IBM
(a)

Technical Company

Phone Company

Ericsson Nokia Motorola

Ratio R = 0.3 Computer Company(10)

Toshiba(1) NEC(2) Compaq(3) Apple(2) IBM(2)
(c)

 Figure 1: A sample hierarchy for Computer Company

2.2.3 Lexical chain methods
Word frequency is a good indicator of important content, but it does not consider the
relation between words in different parts of a text. Extracting sentences from a text based
on word frequency often causes a lack of cohesion. To address the problem, more
sophisticated but still essentially statistical methods of sentence or paragraph extraction,
such as lexical chains, have been investigated. A lexical chain is a set of words in the text
that are related to each other (Brunn et al., 2001). The relation between words is found
using lexical lists taken from a thesaurus or a computerized lexicon, such as for example
WordNet. By using lexical chains, we can statistically find the most important concepts
by looking at structure in the document rather than deep semantic meaning. All that is
required to calculate these is a generic knowledge base that contains nouns, and their
associations.

 11

A general algorithm for computing a chain can be presented in the following way:
• Select a set of candidate words from the text.
• For each of the candidate words, find an appropriate chain to receive a new

candidate word, relying on a relatedness criterion among members of the chains
and the candidate words.

• If such a receiving chain is found, insert the candidate word in this chain and
update it accordingly; else create a new chain.

Chains are scored according to a number of heuristics: their length, the kind of relation
between their words, the position in the text where they start, etc. Sentences that are most
connected to lexical chains are extracted.
One of the drawbacks of lexical chains is that they are insensitive to the non-lexical
structure of texts, such as their rhetorical, argumentative or document structure. For
example, they don't take into account the position of the elements of a chain within the
argumentative line of the discourse, sometimes not even within the layout- or genre-
determined structure of the document. Therefore, the relevance of chain elements is
calculated irrespective of other discourse information.
.

2.2.4 Latent Semantic Analysis
Latent Semantic Analysis (LSA) is a statistical, corpus-based text comparison mechanism
that was originally developed for the task of information retrieval, but in recent years it
has shown remarkably human-like abilities in a variety of language tasks (Wiemer 1999).
LSA can be used in sentence extraction methods in order to reduce the redundancy in the
summary. Anti-redundancy was not explicitly accounted for in earlier systems, but forms
a part of most of the current summarizers. Anti-redundancy scoring is computed
dynamically as the sentences are included in the summary, to ensure that there is no
repetitive information in the summary.
Gong and Liu (2001) present and compare sentence extraction methods using LSA and
relevance measures. Use of relevance measures is a standard IR practice. The document
is decomposed into sentences where each sentence is represented by a vector of words
that it is composed of. The entire document itself is represented as a single vector of word
frequencies. The word frequencies are weighted by local word weights and global word
weights and these weighted vectors are used to determine the relevance. A sentence S
that has the highest relevance is selected from the document and included in the summary
and then all the terms contained in this sentence are removed from the document vector.
This process is continued till the number of sentences included into the summary has
reached a pre-defined value. The sentence that is most relevant to the document vector is
the one that conveys the maximum information. So in each step, sentences that convey
maximum information with regard to the current sentence vector are selected. The
process of removing words from the document vector ensures that redundant information
is not included in the summary. The latent semantic analysis approach uses a matrix
decomposition mechanism called the Singular Value Decomposition (SVD) to generate
an index matrix (Landauer et al. 1998). This index matrix is then chosen to select the
appropriate number of sentences to be included in the summary

 12

2.2.5 Vector-Based Semantic Analysis using Random Indexing
Vector-based semantic analysis is a technology for extracting semantically similar terms
from textual data by observing the distribution and collocation of terms in text (Karlgren
and Sahlgren 2001). The result of running a vector-based semantic analysis on a text
collection is in effect a thesaurus: an associative model of term meaning.
Random Indexing uses sparse, high-dimensional random index vectors to represent
documents (or context regions or textual units of any size). Given that each document has
been assigned a random index vector, term similarities can be calculated by computing a
terms-by-contexts co-occurrence matrix. Each row in the matrix represents a term, and
the term vectors are of the same dimensionality as are the random vectors assigned to
documents. Each time a term is found in a document, that document's random index
vector is added to the row for the term in question. In this way, terms are represented in
the matrix by high-dimensional semantic context vectors which contain traces of each
context the term has been observed in. The underlying assumption is that semantically
similar terms will occur in similar contexts, and that their context vectors therefore will
be similar to some extent. Thus, it should be possible to calculate the semantic similarity
between any given terms by calculating the similarity between their context vectors
(mathematically, this is done by calculating the cosine of the angles between the context
vectors). This similarity measure will thus reflect the distributional (or contextual)
similarity between terms.

2.2.6 Pronoun Resolution
Automatically summarised text can sometimes result in broken anaphoric references due
to the fact that the sentences are extracted without making any deeper linguistic analysis
of the text. For example, if the summarization algorithm decides to select only the second
sentence in the following discourse fragment, and John and Lisa are not mentioned
earlier in the text, it will be impossible to know that ‘He’ refers to John and ‘her’ refers
to Lisa.

 John kissed Lisa. He has been in love with her.

Various methods have been implemented in order to resolve different types of pronouns.
The Pronominal Resolution Module (PRM) is a method which resolves some types of
pronouns in Swedish. The method is implemented as a text pre-processor, written in Perl
(Hassel 2000).
PRM works as a preprocessor to SweSum and uses lists of focus applicants. Focus means
person(s)/item(s) that are most prominent at a specific point in the discourse. These lists
can be seen as stacks of focus applicants and applicants are pushed upon appropriate
stack when found. In other words, every time a nominal phrase is recognized, it is
categorized and pushed onto the appropriate list for that category.
Currently there are only two focus applicant lists in PRM; one for each natural gander.
Choice of applicant for an anaphor is based upon salience (represented by the
antecedent’s position in a list) and semantic likelihood (based on what list the antecedent
is to be found in).The latter is determined by using semantic information in a noun
lexicon.

 13

PRM uses a lexicon of nouns that contains information about each entry’s natural
(han/hon -he/she) or grammatical (den/det - it/it) gender. The current noun lexicon
contains over 1500 gender specified first names.
The algorithm used in PRM consists of three distinct phases that act on three different
levels: discourse, sentence and word level.
For each discourse (text):

• Identify and annotate abbreviations. This step is necessary for sentence
segmentation.

• Identify and segment sentences.
For each sentence:

• Use templates to identify special cases such as active/passive phrases.
• If one or more pronouns/anaphoric expressions are found, annotate them using

appropriate focus applicant lists.
• Identify and segment words.

For each word in each sentence:
• Search for pronoun/anaphoric expression (i.e. han (he), hon (she), den (it or the),

det (it or the), företaget (the company), etc.). If a pronoun/anaphor is found,
annotate it in AHTML with the most likely antecedent and sentence number
found in the corresponding focus applicant list (based on gender and/or any other
supplied semantic information). Pronouns are marked with the tag pair
<! ANAPHOR REF="Referent" LINE="Line number"> and </! ANAPHOR>,
For example, the pronoun he in the annotation
<! ANAPHOR REF="Robert" LINE="16">he</! ANAPHOR> represents the
antecedent “Robert” found in the sixteenth sentence.

• Search and compare with lexicon to see if it is a known noun.
• If a noun is found, place it first in appropriate focus applicant list (according to

category) along with information on in which sentence it was found.

2.2.7 Machine Learning Techniques
Given a set of training documents and their extractive summaries, the summarization
process is modelled as a classification problem: sentences are classified as summary
sentences and non-summary sentences based on the features that they possess (Neto et al.
2002). The classification probabilities are learnt statistically from the training data, using
Bayes’ rule:
P (s ∈ < S | F1, F2... FN) = P (F1, F2… FN | s ∈ S) * P (s ∈ S) / P (F1, F2…
FN)

where, s is sentences from the document collection, F1, F2…FN, are features used in
classification and P (s ∈ < S | F1, F2... FN) is the probability that sentence s will be
chosen to form the summary S given that it possesses features F1, F2…FN.
Kupiek et al. (1995) have developed a trainable summarization program that is grounded
in a sound statistical framework. For summaries that were 25% of the size of the average
test document, it selected 84% of the sentences chosen by professionals.

 14

2.2.8 SUMMARIST
The SUMMARIST project is developed by Information Sciences Institute (ISI)6 at the
University of Southern California (Lin and Hovy 1997). Extract as well abstract
summaries can be generated by this system. The goal of SUMMARIST is to provide a
robust text summarization based on the ‘equation’:
Summarization = topic identification + interpretation + generation.
Each step contains modules trained on large corpora of text. The identification stage
filters the input document to determine the most important topics.
SUMMARIST combines NLP methods using statistical techniques (extract) with
symbolic world knowledge (abstract) provided by dictionaries, WordNet and similar
resources

6 http://www.isi.edu/

 15

3. SweSum
SweSum7 (Dalianis 2000) is a web-based text summarizer developed at Royal Institute of
Technology (KTH). It uses text extraction based on statistical and linguistic as well as
heuristic methods to obtain text summarization and its domain is Swedish HTML-tagged
newspaper text.
SweSum is available for Swedish, Norwegian, Danish, Spanish, English, French and
German. It has been evaluated and its performance for English, Danish, Norwegian and
Swedish is considered to be state-of-the-art. The French, German and Spanish versions
are in prototype states (Dalianis 2000).
Some of the techniques described in the previous chapter are not employed by SweSum,
since they require linguistic resources that are not available in the current
implementation. For example the algorithms used in Knowledge-Based concept counting
and Lexical chains methods require access to WordNet (not currently used in SweSum).
Since SweSum generates only extract summaries, the methods in the SUMMARIST
project for generating abstract summaries, are not implemented.
There are plans to implement Latent Semantic Analysis (LSA) or Random Indexing
methods in the future releases.

3.1 Architecture
SweSum is implemented as a HTTP client/server application as shown in Figure 2. The
summarization program is located on the server side and the client is a browser such as
Internet Explorer or Netscape Navigator. The client interacts with the server using the
HTTP protocol which helps in the accurate transfer of data from a browser and responses
from the server.
The summarization process starts when the user (client) clicks on a hyperlink
(summarize) in the SweSum Web site:

• The browser (Web client) sends a summarization request to the Web server
where SweSum is located (marked 1 in Figure 2). The document/ (URL of the
document) to be summarized is attached to the request.

• The request is forwarded to SweSum through a HTTP server (2).
• The document is summarized (3-6).
• The summary is returned back to the HTTP server (7) that returns the

summarized document to the client (8).
• The browser then renders the summarized text to the screen.

3.2 HTTP
HTTP (HyperText Transfer Protocol) is the network protocol used to deliver resources
on the World Wide Web. A resource is a file (HTML, image), a dynamically-generated
query result, an output of a CGI script, or something else.

7 A live version at http://swesum.nada.kth.se/index.html

 16

HTTP

Web Server

Web Client

Apache HTTP Server

Lexicon

Summarizer

Summarized
Text

Original Text

HTTP Client (Win Explorer/Netscape/Mac)

Pass IIIPass IIPass I
Tokenizing
Scoring
Keyword extraction

Sentence Ranking Summary Extraction

1

2

8

7

6

5

4

3

Figure 2: SweSum architecture

3.3 Web Client
Web client (browser) is an application for interpreting and displaying HTML documents,
i.e. Netscape Navigator, Internet Explorer, Mozilla etc.

3.3.1 HTML
HTML (HyperText Markup Language) is a markup language which is made up of
various tags embedded in the text of a document. The tags are used to format the
document. There are three different types of tags;

• Containers, in which there is a start and an end tag ().
• Optional, end tags are optional (not required) for example <p> </p>.
• Empty, contains no end tags (8,
9).

HTML is platform-independent which means that the HTML documents are portable to
different computer systems. [See Appendix A]

3.3.2 Original text
The original text is in text/HTML format on the Web or located on the PC.
HTML file: A HTML file located on WWW.
Text area: A text the end-user writes directly in the entry page to SweSum’s web site.
Upload file: A text/HTML file located on the end-user’s PC.

8 Image
9 Break or new line

 17

3.3.3 JavaScript
JavaScript is an interpreted easy-to-use programming language that can be embedded in
the header of an HTML document. It can increase the dynamic and interactive features of
a web page by allowing the user to add special effects, check forms, and perform
calculation and more.

3.4 Summarizer
The summarizer is located on the web server. It takes the original text as input and
performs summarization in three passes and creates the final output (the summarized
text).

3.4.1 Lexicon
SweSum uses a static lexicon containing many frequent open class words of the current
language, Swedish10, English etc. The lexicon is a data structure11 for storing key/value
pairs called root table where the key is the inflected word and the value is the stem/root
of the word. For example boy and boys have different inflections but the same root.

3.4.2 First pass

3.4.2.1 Tokenizer
The tokenizer reads the original text which is in ASCII12 format and outputs the
tokenized text. The tokenizer:

• Removes all new line characters “\n” in the original text.
• Marks all abbreviations13 in the document with the tag <! ABBRV>. The word

sv.14, for instance will be written <! ABBRV>sv. </! ABBRV>.
• Invokes Pronominal Resolution which is only partially implemented for Swedish

and is in a prototype state.
• Finds the sentence boundaries by searching for periods, exclamations, question

marks and
 (the HTML new line) in the text. A new line character “\n” is
inserted after each sentence boundary.

• Finds the word boundaries by searching for the characters such as “.”, “,”, “!”,
“?”, “<”, “>”, “:”, spaces, tabs and new lines.

The output of the tokenizer is the original text which has now the additional new line
markers after sentence boundaries. The new line character “\n” is used to divide the text
into different lines. Each line is put into a hash table called text table. The key to the
table is the line number and the value is the content of the line. This is shown in the
following table:

10 The Swedish version of SweSum uses a keyword lexicon that contains about 40,000 words and their
700,000 possible inflections.
11 It is implemented as a hash table in Perl.
12 American Standard Code for Information Interchange (ASCII) is the numerical representation of a
character such as ‘a’ or ‘@’. Each character is represented by a byte (7-bit).
13 If an abbreviation database is available for the current language.
14 This is the abbreviation for svensk (Swedish).

 18

Sentence Line Nr
<html> 1
<title> War against Iraq </title> 2
<body> 3
American-led forces will stay in Iraq no
longer than necessary.

4

…..
…..
…..

….

</body> n-1
</html> n

Table 1: Text table

3.4.2.2 Keyword extraction
Keywords are meaning-carrying words but different researchers use different parts of
speech as keywords. Keywords used by SweSum are nouns, adjectives and adverbs of
time.
There are two different ways to find keywords:

1 Parsing or tagging the text.
2 Using a static lexicon

The second method is less complicated and faster than the first one but the lexicon in the
second method needs to be updated as natural languages continually create new words.
Keyword frequency counting in SweSum is based on the open class words15 by using a
static lexicon. The system asks the lexicon for a specific word (inflected form), the
lexicon returns the lemma of the word which is stored in a word frequency hash table.
I.e. the system does not count two identical words with different inflections as two
different words.

Word Frequency
American-led 10
Force 5
Iraq 26
Baghdad 13
….
….

…

War 20
Table 2: Word frequency table (wft)

3.4.2.3 Scoring
Scoring is used to decide on the importance of each line in the document. The HTML
tagged lines which do not contain text are assigned the static value “not text” i.e. those
lines will not be summarized. All text lines are assigned the value “text”.

15 Adjectives, nouns and adverbs of time.

 19

Sentence Line Nr Value
<html> 1 Not text
<title> War against Iraq </title> 2 Not text
<body> 3 Not text
American-led forces will stay in Iraq no
longer than necessary.

4 Text

…..
…..
…..

….

</body> n-1 Not text
</html> n Not text

Table 3: Text table value

Text lines are put into a data structure16 for storing key/value called text table value. The
key to the table is the line content and the line number and the value is the score of the
line. The line score depends on the position of the line and the scores of the words
contained in the line. The idea is that high scoring sentences are kept in the final
summary.

The following methods are used by SweSum for calculation of the line scores:
First line in the text should be included in the summarization. This is done by giving it a
very high score. (Default value ‘1000’)

Position score depends on the type of the text. SweSum supports two types of text:
Newspaper and Report.
Line position is less important in reports than the newspaper text. In newspaper text the
most important part of the text is the first line followed by other lines in descending
order. The following formula is used for calculation of the position score for newspaper
texts:

Position score = (1/line nr)*10.

Numerical values in a document such as dates are important. A constant value is added to
the score of the line. (Default value ‘1’)

Bold text () in the HTML coded text is important and given a higher score. In some
of Swedish newspaper texts it indicates beginning of a paragraph and the first sentence of
each paragraph usually introduces the paragraph. (Default value ‘100’.)

Keywords are the most frequent words in the text. Sentences containing keywords are
scored higher than the ones with fewer keywords.

User keywords are entered to the system by the user such as via a query.

16 It is implemented as a hash table in Perl.

 20

Simple combination function
All the above parameters are put in a combination function with modifiable weights
(default values) to obtain the total score of each sentence.

3.4.3 Second pass
In the second pass, the score of each word in the sentence is calculated and added to the
sentence score in the text table value.

3.4.3.1 Sentence score
Word score = (word frequency) * (a keyword constant17)
Sentence Score = ∑ word score (for all words in the current sentence)
The sentence weight is equal to the weighted sum of the weights of all the words in the
sentence.

Example: American-led forces will stay in Iraq no longer than necessary (see Table 2).
Word score (American-led) = 10 * 0.333 => 3.33
Word score (force18) = 5 * 0.333 => 1.665
Word score (Iraq) = 26 * 0.333 => 8.658
Sentence Score = 3.33 + 1.665 + 8.658 =>13.653

3.4.3.2 Average sentence length
To avoid inaccurately awarding long sentences with a high ranking, the sentence score is
multiplied by the average sentence length (ASL) and divided by the number of words in
the current sentence to normalize for length.

Word-count = nr of words in the text.
Line-count = nr of lines in the text.
Average sentence length (ASL) = Word-count / Line-count
Sentence score = (ASL * Sentence Score)/ (nr of words in the current sentence)

The words and lines are counted dynamically during the summarization process. For
example, if a text contains 20 sentences and 200 words, the Sentence Score for line 5 is
calculated as shown in the example below:

Word-count = 40 (the nr of words in line 1-5)
Line-count = 5
Nr of words in the current sentence = 10
Sentence score = 13.653
ASL = Word-count / Line-count= 40/5=> 8
Sentence Score = (8*13.653)/10 = 10.9224

17 Default value = 0,333
18 The system counts the word force, the stem of the forced (inflected form).

 21

3.4.3.3 Cutoff size and unit
The user entered values cutoff size and unit decides the amount and type of the summary.
The unit has one of the values percent, words or characters and the cutoff size a
numerical value. Examples:

Cutoff size = 30, unit = percent keeps 30% of words in the original text.
Cutoff size = 300, unit = words the summary contains 300 words.
Cutoff size = 1000, unit = characters the summary contains 1000 characters.

3.4.3.4 Sorted text value
The sentences in the text table value are sorted according to the highest value and stored
in an array called sorted text value. By using the information from the cutoff size and the
unit, the number of lines to be kept in the final summarization is calculated. Those lines
are the high-ranking sentences in the sorted text value.

3.4.4 Third pass
In the third pass, the final summary file (HTML format) is created. This file includes the
following19:

• All non text html lines
• All the highest ranking text lines in the sorted text value.
• Statistical information about the summary, number of words, number of lines, the

most frequent keywords etc.

3.5 Evaluation
Evaluating summaries generated by automatic text summarization systems is not a
straightforward process.
The evaluation task is normally performed manually by individuals who subjectively
compare different summaries and choose the best one.
A problem with this approach is that the individuals who perform the evaluation task
normally have very different ideas on what a good summary should contain. In a test,
Hassel (2003) found that at best there was a 70% agreement between summaries created
by two individuals.
A further problem with manually performed evaluation is that it is an extremely time-
consuming task.
Automatic evaluation is another approach in which the evaluation process is automatized.
This is however still a research topic.
Using gold standards by sentence selection is one way to implement an automatic
evaluation system. A gold standard summary contains the most frequently chosen
sentences in a given text, produced by majority votes over a number of manually created
extracts (Dalianis et al., 2003).
The gold standard can then be compared with the different summaries created by the
summarization system.
A gold standard is supposed to be the correct, true or best result. This presupposes,
however, that there is a single best result. In summarizations there appears to be no “one

19 The variable n (line nr) preserves the line order in the original text.

 22

truth", as is evidenced by a low agreement between humans in producing gold standard
summaries by sentence selection.

Manually evaluation of SweSum
First evaluation of SweSum was carried out in the year 2000 in a field test within the
framework of a 4-credit course at NADA/KTH (Dalianis 2000). Nine students were given
the task of automatically (using SweSum) summarizing 10 texts, by gradually lowering
the size of the summary (in percent) and noting in a questionnaire when coherence was
broken and when important information was missing. The purpose was to see how much
a text can be summarized without loosing coherence or important information.
The results showed at 30 percent summarization for good coherence and 24 percent
summarization for good content. (30 percent summarization means to remove 70 percent
of the text).
Fallahi (2003) presented a thorough manual evaluation of SweSum carried out at the
Swedish newspaper Sydsvenska Dagbladet20. He compared the performance of SweSum
as opposed to human editors in summarizing 334 Swedish news texts.
He found that in general, SweSum performed well, even if a number of shortcomings
showed up.

• Sometimes SweSum cut sentences by a mistake in sentence boundary detection.
• At the end of a long article, sometimes the first sentence of a paragraph was

omitted while the second or third sentence was kept, so that the quality of the
summarized text was affected.

• Sentences of an unformatted text were put together in a single paragraph. The
latter problem is however fixed in the current version of SweSum.

• For cutting down news to SMS size (maximum 160 characters), SweSum
performed remarkably well.

Evaluation of SweSum using an extract corpus
In order to evaluate SweSum, Hassel (2003) has created an extract corpus for Swedish
called KTH eXtract Corpus21. The corpus contains a number of original texts and asset of
their different manually extracts. The extracts are created by different informants who are
asked to choose a predefined number of important sentences in a given text.
The KTH extract tool gathers statistics on how many times a specific sentence from a text
has been included in a number of different summaries. It generates then the gold standard
summary which is produced by majority votes containing the most frequently chosen
sentences.
The extract summaries with SweSum were manually compared on sentence level with the
gold standard extracts.
The result of a field test by using the KTH extract tool showed that the summaries
generated with SweSum shared as many as 57.2% of the sentences with the gold
standard.

20 http://w1.sydsvenskan.se/index_css.html

21 A live version can be found at http://www.nada.kth.se/iplab/hlt/kthxc/showsumstats.php

 23

3.6 Notes on SweSum

3.6.1 Summarization algorithms
Cohesion:
SweSum employs a linear summarization technique:
1 The whole text is divided into sentences.
2 Each sentence is scored separately.
3 The sentences with highest score are extracted for the final summary.
But the extracted sentences may or may not relate to each other.

Important information in the text:
The most important (central) topics in the text are identified by using a statistical
keyword approach (word frequency). But this method cannot detect all important
information such as synonyms in the text. This can be somewhat helped by expanding
keywords with light semantics, for example LSA (Latent Semantic Analysis) or by
Random Indexing.

Redundancy:
High keyword ranking can introduce redundancies in the summary. The summary
become concentrated around one specific topic. Methods such as LSA can be used in
order to reduce the amount of redundancy.

3.6.2 Program Structure
The SweSum project started 1999 by implementing a text summarizer for Swedish and
since then it has been developed and new versions of SweSum have been expanded with
English, French, German, etc. SweSum uses a plain structure i.e. all languages are
handled in the same module and that make the program code unreadable and difficult to
modify. Especially for languages such as Persian using Unicode characters, it is
necessary to handle these languages in different modules.

3.6.3 HTML parser
The current implementation of HTML parsing in SweSum handles only very simple html
pages. Advanced pages including frames, images, etc are not supported. There are a lot of
problems with parsing. Sometimes some important information such as charset22 in the
header of the summarized text is missing and consequently the presented text by the
browser is unreadable ASCII characters.

3.6.4 Programming language
Perl is a very powerful and flexible script language for text management (tokenizing). It
is easy to put together short Perl programs to perform tasks that might otherwise require
hours of developments effort with any conventional programming language. But
programmers who are used to Java, C or C++ can find its syntax (especially in regular
expressions) and data types unusual.

22 This parameter contains information about the used encoding in the document.

 24

4. FarsiSum
FarsiSum is a web-based text summarizer for Persian based upon SweSum. It
summarizes Persian newspaper text in HTML/text encoded in Unicode format.

4.1 Persian Language
Persian (also known as Farsi or Parsi23) is a language spoken in Iran, Tajikistan and
Afghanistan. Persian is a member of the Indo-European family of languages, and within
that family, it belongs to the Indo-Iranian (Aryan) branch, within which, the Iranian sub-
branch consists of the following chronological linguistic path:
Avestan/Old Persian -> Middle Persian (Pahlavi) -> Modern Persian.

4.1.1 Writing System
Old Persian was based on the cuneiform writing system (pictogram style) as early as the
6th century B.C. Later, the Persians invented a new alphabet called Pahlavi to replace the
cuneiform alphabet. However, after the Arabic conquest in 651, the Persians adopted a
unified Arabic script for writing.

Glyph English Glyph English Glyph English Glyph english

 A D Z V

 A Z H

 B R Y

 P Z F I

 T Ž Q

 S S K

 J Š G

 Č S L

 H Z M

 X T N

Table 4: Persian alphabet

The modern Persian writing system (also known as Perso-Arabic) uses the Arabic
alphabet, but with the addition of four letters which do not occur in Arabic. These are:
 ž, g č, p. Not all of the sounds in the Arabic alphabet exist in the Persian ,‘پ چ گ ژ‘
language; as a result, more that one letter may represent more than one sound. For
example, there are four letters in Persian for the sound z (ز ض ظ ذ) and three for the

23 The term "Farsi", while being an accepted term for the language in Iran, came about due to the fact that
Arabic does not contain the letter "p", so Arabs pronounced "Parsi" as "Farsi".

 25

sound s (س ص ث). Also, a single sound in Persian may have many symbols that
correspond to it, which may also add to the confusion. A complete list of Persian alphabet
is presented in Table 4.
The main rules for writing Persian:

• Persian characters take one of four forms: initial, medial, final, and stand-alone,
depending on where they occur in the text stream.

Initial Medial Final Isolated

گ گ گ G گ
B ب ب ب ب

Table 5: Persian character forms

• The last character in the word marks the end of the word and is written in the final
or isolated form.

• Letters in a word are connected to each other except for the letters [āzrdv]‘ ا زذ د ر
 These letters, because of their form, cannot be written so that they connect to .’ و آ
the following character in a word.

• The alphabet is read from right to left while numbers are read from left to right.
• Short vowels a, i and u are not represented in a word except when they are in the

initial or final position in a word.
• The long vowel [a] is represented by آ in the initial position and by ا otherwise,

for example:

بآ āb water

داب bād wind

Table 6: the long vowel [a]
• Long vowels [i:], [u:] are represented by the consonants y and v.

4.1.2 Numbers
Persian numbers have the same origin as the Latin numbers and are written left to right.

 Unicode Unicode
0 ٠ 06F0 5 ٥ 06F5
1 ١ 06F1 6 ٦ 06F6

2 ٢ 06F2 7 ٧ 06F7

3 ٣ 06F3 8 ٨ 06F8
4 ٤ 06F4 9 ٩ 06F9

Table 7: Persian Numbers

 26

4.1.3 Word Boundaries
In Persian text, word boundaries can be delimited by space, punctuation, and the forms of
the characters indicating its position within a word. Some morphemes may appear in
either attached or detached form.
Space
Word boundaries are usually denoted by space. However, compound words and light verb
constructions may appear without a space separating them.
Punctuation
The stop (.) marks a sentence boundary, but it may also appear in the formation of
abbreviations or acronyms. The slash (/) is used in the numbers and the dash (-) could be
used to separate compound words. Other punctuation marks including the comma,
quotes, brackets, question mark and colon unambiguously indicate word boundaries.
Character form
As explained earlier, Persian characters take one of four forms: initial, medial, final, and
stand-alone and a final form character indicates the end of a word. This can be used for
instance by a tokenizer to determine word boundaries.

4.1.4 Acronyms and Abbreviations
Acronyms
Persian acronyms are formed from the initial letter of each of the successive parts of a
compound term.

شور آطلاعات ا ومنيت اازمانس ساواك
SAVAK24 Sazman-e Amniyat Va Attelaat-e25 Keshvar

Table 8: Persian acronyms

Foreign acronyms in Persian normally consist of one or more characters followed by a
stop. The roman characters in acronyms are transliterated into Persian. There exist,
however, variations to this format. Certain magazines and newspapers form the acronyms
without a stop as illustrated in the example below:

بی بی سی سی.بی.بی
bibici bi.bi.ci

BBC

آی.بی.اف اف بی آی
efbiay ef.bi.ay

FBI

Table 9: foreign acronyms

Certain words that are considered acronyms in English are treated as proper nouns in
Persian and are not represented by a letter by letter transliteration, instead they are written
as they are pronounced as shown in the following example.

24 Iran's National Intelligence and Security Organization during the Shah’s rule.
25 It is pronounced ettelaat.

 27

 sīyā CIA سيا

 aydz AIDS ايدز

Table 10: foreign acronyms

Abbreviations
Abbreviation can appear as a single character with a stop. However, the format used for
abbreviations is not very consistent. Two characters abbreviating a lexical element can be
written with stops following both, or a stop following only the last character, or simply
separated by a space without any stops. This is illustrated in the following example:

. ق.ه .ه ق ه ق

h.Q. h Q. h Q 26

Table 11: Persian abbreviations

4.1.5 Personal Pronouns
Pronouns include personal as well as quantifying pronouns such as everyone and
someone. Personal pronouns can appear either as separate lexical elements or as
morphemes on the noun, verb or adjective. Example:

Ketāb-aš ketāb-e ū
Book-his/her Book-ezafe27 he/she
His/her book His/her book

Table 12:Personal pronouns

asb-e safīd-am asb-e safīd-e man
Horse-ezafe white-my Horse-ezafe white-ezafe I
My white horse My white horse

Table 13: Personal pronouns

Dīd-am-aš Man ūrā dīd-am
Saw-1sg.pron-her/him I him/her saw-1sg-pronoun
I saw her/him I saw her/him

Table 14: Personal pronouns

26 Hejri Qamari (The Islamic Lunar Calendar).
27 The ezafe suffix is the element joining the Persian noun phrase constituents to each other.

 28

4.2 Encodings

4.2.1 The ISO28 8859
ISO 8859 is a full series of standardized multilingual single-byte coded (8bit) graphic
character sets for writing in alphabetic languages:
Latin1 (West European), Latin2 (East European), Latin3 (South European), Latin4 (North
European), Cyrillic, Arabic, Greek, Hebrew, Latin5 (Turkish), Latin6 (Nordic).
The ISO 8859 charsets are not even remotely as complete as the truly great Unicode but
they have been around and usable for quite a while (first registered Internet charsets for
use with MIME29) and have already offered a major improvement over the plain 7bit US-
ASCII.
Unicode (ISO 10646) will make this whole chaos of mutually incompatible charsets
superfluous because it unifies a superset of all established charsets and is out to cover all
the world's languages.

4.2.2 Unicode & UTF-8
Unicode is a two-byte (16bit) encoding which covers all of the world's common writing
systems. Unicode provides a unique number for every character, no matter what the
platform, no matter what the program, no matter what the language. The encoding is the
system by which the characters in a set are represented in binary form in a file. The
Unicode set may be represented using three encodings: UTF-8, UTF-16 and UTF-32.
UTF-8 Unicode Transformation Format is an algorithmic mapping from every Unicode
scalar value to a unique byte sequence.

Character Unicode ASCII UTF-8

 B 1576#& ¿╪ 0628 ب;

D 062 دF ╪» د

Table 15: Unicode example

4.3 Implementation of FarsiSum
The design and implementation includes Web Programming on a Windows-based System
with Perl as programming language. Since the current implementation is in a prototype
state, not all SweSum functionality has been implemented for this version of FarsiSum:

• A stop-list is used instead of a Persian dictionary.
• Abbreviation and acronym modules are not used

FarsiSum uses the same structure used by SweSum (see Figure 3) but it modifies some
modules to be able to handle documents with Unicode content and UTF-8 encoding.

28 International Organization for Standardization (ISO)
29 Multipurpose Internet Mail Extensions (MIME) extends the format of Internet mail to allow non-US-
ASCII textual messages, non-textual messages, multipart message bodies, and non-US-ASCII information
in message headers.

 29

The summarization process starts when the user (client) clicks on a hyperlink
(summarize) in the FarsiSum Web site:

• The browser (Web client) sends a summarization request including a document to
be summarized, through a HTTP server to the Web server where FarsiSum is
located.

• The document is summarized in three phases using a Persian stop-list.
• The summary is returned back to the client through the HTTP.
• The browser then renders the summarized text to the screen.

Summarized
text

Original text
Tokenizing

Scoring
Keyword Extraction

Sentence ranking

Summary extraction

Pass 1

Pass 2

Pass 3

User Interface

Stop-list

HTTP

Figure 3: FarsiSum architecture

4.3.1 User Interface
The user interface includes:

• The first page of FarsiSum on WWW presented in Persian.
• A Persian online editor for writing in Persian.
• The final summary including statistical information to the user, presented in

Persian.

4.3.2 The Stop-List
The stop-list is a HTML file (UTF-8 encoding) containing about 200 high-frequency
Persian words including the most common verbs, pronouns, adverbs, conjunctions,
prepositions and articles. The assumption is that words not included in the stop-list are
nouns or adjectives. The stop-list has been successively built during the implementation
phase by running FarsiSum in order to find the most common words in Persian.

 30

Table 16 below shows 18 most common Persian words (newspaper text) identified by
FarsiSum.

Rank Persian English Rank Persian English Rank Persian English
 to به in 3 در and 2 و 1
 ra31 را ke30 6 آه from 5 از 4
 be بودن with 9 با this 8 اين 7

 on بر for 12 برای every 11 هر 10
 they آنها do 15 آردن have 14 داشتن 13
become شدن say 18 گفتن or 17 يا 16

Table 16: the most common Persian words

4.3.3 Pass I & II
Tokenizer:
The tokenizer is modified in order to recognize Persian comma, semi colon and question
mark.

• Sentence boundaries are found by searching for periods, exclamations, question
marks and
 (the HTML new line) and the Persian question mark (؟)32.

• The tokenizer finds the word boundaries by searching for characters such as “.”,
“,”, “!”, “?”, “<”, “>”, “:”, spaces, tabs and new lines. Persian semi colon, comma
and question mark can also be recognized.

• All words in the document are converted from ASCII to utf-8. These words are
then compared with the words in the stop-list which are in the utf-8 format.

• The word order in Persian is SOV33 , i.e. the last word in a sentence is a verb. This
knowledge is used to prevent verbs from being stored in the Word frequency
table.

Sentence Scoring:
There are no changes in the scoring algorithms used by SweSum. The sentences are
scored and put into a ranking list. Each sentence is scored according to the position of the
sentence and the scores of the words contained in it. The highest-ranking sentences are
then identified and kept in the final summary.
A sample sentence-list produced in the second pass is shown below:

Nr 1 Rank 12.7054545454545, من از جنگ دوم جهانی گفتم و از ژاپن و آلمان مثال آوردم که
 \.در حقيقت پس از رهايی از چنگال فاشيسم به دموکراسی رسيدند

Nr 2 Rank 7.52, متاسفانه جنگ ها همزاد انسان بوده و از نخستين دوران بشر اوليه تا به امروز
.ادامه داشته است

30 Conjunction
31 Object marker.
32 The Persian question mark is represented by “؟” in UTF-8 encoding.
33 SOV stands for Subject, Object and Verb.

 31

4.3.4 Pass III
Post-processing module is mainly used for creating the final summary file (HTML
format) presented in Persian. The file includes all non-text html lines, highest ranking
text lines and statistical information about the summary, number of words, number of
lines, the most frequent words, etc.

4.4 Notes on the Current Implementation
The current implementation of FarsiSum is still a prototype. It uses a very simple stop-list
in order to identify the important keywords in the text. Persian acronyms and
abbreviations are not detected by the current tokenizer.
In addition, Persian syntax is quite ambiguous in written form, which raises certain
difficulties in automatic parsing of written text and automatic text summarization.
For example, selection of important keywords in the topic identification process will be
affected by the following word boundary ambiguities:

• Compound words may appear as two different words.
• Bound morphemes may appear as free morphemes or vice versa.

Some of the factors which contribute to the ambiguity are listed and explained below.
These ambiguities are not resolved in the current implementation.

4.4.1 Word Boundary Ambiguity
The stop (.) marks a sentence boundary, but it may also appear in the formation of
abbreviations or acronyms.
Compound words and light verb constructions may also appear with or without a space
separating them.

4.4.2 Ambiguity in morphology
Certain ambiguities arise in a computational analysis of Persian text since the same
surface form can represent different morphemes (Megerdoomian and Rémi 2000).
In addition, short vowels are not marked in written text, which results in different
possibilities for analysis. The word آرم (krm), for instance, can be pronounced with
different vowel combinations resulting in five possible lexical elements as shown in the
example below.

 krm آرم
kerm karam kerem krom karm
worm generosity cream chrome vine

Table 17:ambiguity in morphology

A reader uses the context to determine the word in the sentence.
Furthermore, certain affixes always appear bound whereas others can also appear as free
morphemes. For example the affix mī in “man mī ravam“(I go) can be written in three
different ways as shown in the example below:

• As free morpheme mĪ with space between mĪ and ravam.34

34 The capital letter ‘Ī’ in “mĪ” indicates that the ‘Ī’ is in final form i.e. the word boundary.

 32

• As free morpheme mĪ without space in “mĪ ravam”.
• As bound morpheme “mīravam”.

Free morpheme

 with space
Free morpheme
without space bound

روميم رومیم روم یم
mĪ rvm mĪrvm mīrvm

mī ravam (I go)
Table 18:free/bound morphemes

There exist other lexical elements, such as the preposition be, the postposition rā, or the
relativizer ke, that usually appear as separate words in written text, but which can also be
found as attached morphemes.

4.4.3 Word Order
The canonical word order in Persian is SOV, but Persian is a free word order language
and the sentential constituents can be moved around in the clause. This is especially the
case for preposition phrases and adverbials. Adverbs may appear almost anywhere in the
clause, in between the various constituents. Despite the relatively free word order, the
sentences in the written text often remain verb-final.

4.4.4 Phrase Boundaries
There are no overt markers, such as case morphology, to indicate the function of a noun
phrase or its boundary; only specific direct objects receive an overt marker “rā”.
Since Persian is a verb final language, the resulting structure is then
Subject Object-(Object marker) Verb or Subject Predicate Copula, but there are no
obvious markers to determine where the Subject ends and the Object or the Predicate
begins.

4.4.5 Possessive Construction
In English, the link between the two nouns is marked by”`s" (e.g., John's car) or the
preposition "of" (her brother's car). The element joining the Persian noun phrase
constituents to each other is the ezafe suffix. The ezafe, however, is usually pronounced
as the short vowel /e/ and is therefore not marked in written text. The result, in Persian
written text, is a series of consecutive nouns without any overt links or boundaries as
shown in the following example:

Māshīn dūst brādr Ali
Car friend brother Ali
Ali's brother's friend's car
Table 19: the ezafa suffix

The actual pronunciation for this example in spoken language is “Māshīn-e dūst-e
barādar-e Ali”, where the ezafe morpheme is represented by the –e.

 33

4.4.6 Light Verb Construction
Persian light verb constructions consist of a preverbal element, which could be a noun,
adjective or preposition, followed by a light verb, such as kardan (do, make), dādan
(give), zadan (hit, strike) which has partly or completely lost its original meaning.
The elements of a light verb construction can appear either as two separate words or as a
compound word, but the meaning of these light verb constructions cannot be obtained by
translating each element separately as examples in Table 20 illustrate.
The number of verbs that can be used as light verbs is limited, but these constructions are
extremely productive in Persian (Megerdoomian and Rémi 2000).

fekrkardan فكرآردن "thought do" to think
gūš dādan گوش دادن "ear give" to listen
Jārūzadan جاروزدن "broom hit" to sweep
īmel zadan ايميل زدن "email hit" to (send) email
kelīk kardan آليك آردن "click do" to click (on a mouse)
be donyā āmadan به دنياآمدن “to world come” to be born
az donyā raftan رفتنآزدنيا “from world go” to die

Table 20: light verbs

5 Evaluation
In order to evaluate the impact of the stop-list on the final summary, FarsiSum was used
in a field test (in two different modes). Seven native speakers were given the task to
subjectively compare three different summaries of a Persian text generated by three
different methods. This procedure was repeated for three different Persian text
documents.
The methods used in the summaries were: enable/disable the stop-list and the generic
mode implemented in SweSum.
Stop-list enabled: The application has access to the stop-list, i.e. only adjectives and
nouns are regarded as keywords.
Stop-list disabled: No access to the stop-list.
The generic mode in SweSum: In this mode there is no Unicode capability i.e. the
Persian comma, semi colon and question mark are not recognized by the application as
sentence/word boundaries. There is no access to the stop-list.

The participants carried out the test by reading a Persian newspaper text and three
different summaries (30%) of the same text generated by FarsiSum (with/without the
stop-list) and SweSum in the generic mode. In a questionnaire they had to answer to the
following questions:

1 Which summary was the best one?
2 Given a scale of 1-5 (1 for the lowest), what score would you assign to each

summary?
3 Which summary was the most coherent one?
4 Which summary preserved the most important information?

 34

Results
M1 = Method one in FarsiSum (the stop-list is enabled).
M2 = Method two in FarsiSum (the stop-list is disabled).
M3 = Method three in SweSum (the generic mode).
T1…T3 stands for text 1…3.
The answers to the above questions by the participants are shown in Table A-D (see
Appendix C) and Table 21-24 below (given in percent).

1- The best method
As shown in Table 21 and Table 22 (see also table A, B in Appendix C), the test with
FarsiSum in the stop-list enable mode gives the best result (average 52.3%) in all texts
(T1, T2, and T3). The average for M1 and M2 is 52.3 + 14.3 = 66.6% (methods
implemented by FarsiSum).

Text M1 M2 M3
T1 57,1% 14,3% 28,6%
T2 57,1% 0% 42,9%
T3 42,8% 28,6% 28,6%
Average 52,3% 14,3% 33,4%

Table 21: The best method

Text M1 M2 M3
T1 39,1% 33,3% 27,6%
T2 37,5% 27,8% 34,7%
T3 35,8% 29,9% 34,3%
Average 37,5% 30.3% 32,2%

Table 22: The best method (score of 1-5)

2- Cohesion
As can be seen from Table 23 and Table C (see Appendix C) the method one gives us the
most coherent summary (40.1%).

Text M1 M2 M3
T1 50,0% 30,0% 20,0%
T2 36,4% 27,2% 36,4%
T3 36,4% 36,4% 27,2%
Average 40,1% 31,2% 27,9%

Table 23: Cohesion

3- Important information preserved
Table 24 (see also Table D, Appendix C) shows that the important information in the text
was best preserved in the method one (54.6%).

 35

Text M1 M2 M3
T1 44,4% 33,3% 22,3%
T2 77,8% 11,1% 11,1%
T3 41,7% 25% 33,3%
Average 54.6% 23,2% 22,2%

Table 24: Important information preserved

The results of the evaluation show that:

• M1 gives the best result, i.e. using the Persian stop-list improved the quality of
the final summary.

• Excluding final verbs in sentences from word frequency table in the method two
(M2) did not improve the final summary, but when the excluding of verbs was
combined with the use of the stop-list in Method one (M1), then the final
summary was improved in both cohesion and preserving the important
information in the text.

Limitations
The current evaluation uses a very simple evaluation algorithm since there are no NLP
resources such as corpora with manual extracts available for Persian.
In addition, the number of participants and texts used in the evaluation process are very
low and the texts are chosen from a limited numbers of Persian sites using UTF-8
encoding.
Therefore the current evaluation can only result in some indications on validity and is to a
considerable extent based on subjective judgments of the participants.

6 Future Improvements

6.1 SweSum

6.1.1 Methods
The main task in text summarization using extraction methods is to find an accurate
balance between the coherence and preserving the important information in the text. In
extreme cases, a summarization method that has the focus on the important information
may extract the lines A-B1-C2 (as shown in the figure below) as a summary, i.e. the final
summary is not coherent. On the other hand if the focus is on the cohesion, the summary
may include the lines A-B-C. In this case the important information in lines B1 and C2
are missing.

 36

A
B
C
D

A1
B1
C1
D1

A2
B2
C2
D2

 Figure 4: Cohesion & Important Info

To avoid loosing coherence in the text we should combine the current linear structure
used in SweSum with non-linear methods that operate on block level i.e. collection of
sentences rather than sentences. One way to achieve this is to give higher score to lines
adjacent to a line with high score.
Another way is a better utilization of the object oriented structure in the HTML
(XHTML), for example by using the HTML tags 35, <P>36, 37, etc. These tags
operate on a collection of sentences (Appendix A).
One way to improve identification of the important topics is to use various tools such as
Swedish WordNet-SwordNet38 for Synonym Resolution.

6.1.2 HTML Parser

• Increasing the coherence of the summarized text by improving the parsing
process and using HTML tags such as paragraph (<P>), lists: Ordered List
(), Unordered List (), etc which operate at block-level39 rather than
sentence level.

• The HTML tag should be handled as a <BOLD> i.e. sentences
containing this tag should get a higher score.

• Support for frames in the HTML code.
• Saving the charset40 parameter in the HTML header. It can be used in recovering

of the encoding in case it is missing in the final summary.

35 It is a list of ordered items.
36 It is a list of unordered items which is marked with a “bullet”.
37 Paragraph.
38 SwordNet is developed at the department of Linguistics at Lund University:
http://www.ling.lu.se/projects/Swordnet/
39 A block contains several sentences.
40 This parameter contains information about the used encoding in the document.

 37

6.1.3 Structure
As mentioned earlier, the structure of SweSum should be changed. Three possible
solutions are discussed below:

6.1.3.1 Solution I
The current program structure is preserved, but some units are improved:
1 Improvement of the parsing process.
2 Each language has its own module or at least similar languages are in the same

programming block. For example a partition between languages according to the
used encoding (Latin1, Unicode, etc) is suitable.

6.1.3.2 Solution II
The current HTML parser in solution I is replaced with an external HTML parser.

6.1.3.3 Solution III

HTTP

Web-client

Dan.jspNor.jspSwe.jsp Per.jsp

HTML PARSER Dan
Dic

Nor
Dic

Swe
Dic

Dan.javaNor.javaSwe.java Per.java.....................

....................

Per
Dic.......

TOOLS

Lexicon

Model (M)

View (V)
Controller (C)

 Figure 5: SweSum Structure (Java Solution)

The ideal solution is the object oriented approach i.e. using an external HTML parser and
an object oriented programming language such as Java, C++ or Object Oriented Perl.
Java is the best option since it has support for Unicode and provides a growing number of
Internet tool resources such as Servlet41, JSP42, JavaBeans43, etc.

41 Servlets are Java technology's answer to CGI programming. They are programs that run on a Web server
and build Web pages. Java servlets are more efficient, easier to use, more powerful, more portable, and
cheaper than traditional CGI technologies.

 38

An architecture proposal for implementation of SweSum using JSP and JavaBeans is
shown in Figure 5. The building blocks are JSP-pages and JavaBeans in an MVC-
architecture. The goal of the Model-View-Controller (MVC) design pattern is to separate
the application object (model) from the way it is represented to the user (view) from the
way in which the user controls it (controller).

The "C" (Controller) examines the requests from the user, invokes JavaBeans, controls
error handling and module flow.
The "M" (Model) consists of a set of JavaBeans which:

• Implement the summarization methods.
• Handle the database (lexicon) access.
• Handle access to other external resources such as HTML parser.

The "V" (View) is used for presentation of the data fetched by the beans, i.e. generation
of the final summary.
The controller and the view are implemented as JSP-pages or as Java Servlets.
For each language in the application there are one controller, one view, and one or more
JavaBeans.

6.2 FarsiSum
Future improvements include some language-specific solutions in the tokenization
process, new evaluation algorithms, etc. in addition to improvements suggested earlier for
SweSum.

Tokenizer
The tokenization process is an important part of any NLP application. For Arabic script
languages such as Persian, however it plays a more crucial role due to lack of
representation of short vowels in the script and word/phrase ambiguities. The current
tokenizer should be extended in order to recognize the final forms of the characters
indicating word boundaries. Handling of other syntactic ambiguities (phrase,
morphology) requires syntactic/semantic analysis.

Topic Identification
In the current implementation, the important keywords are identified using a very simple
stop-list containing almost 200 words. I.e. it cannot exclude all the verbs and function
words (not included in the stop-list) from the keyword-list, due to the limited size of the
stop-list.
Furthermore, two identical words with different inflections counts as two different words.
These problems can be handled either by extending the size of the stop-list or having
access to NLP applications such as a Persian dictionary.

42 JavaServer Pages (JSP) is a web-scripting technology similar to Microsoft Active Server Pages (ASP).
However, it's more easily extensible than ASP, and it isn't proprietary to any one vendor or any particular
web server. Although the JSP specification has been managed by Sun Microsystems, any vendors can
implement JSP in their own systems.
43 A JavaBeans component is an object that conforms to a communication and configuration protocol, as
prescribed by the JavaBeans specification.

 39

Language-specific solutions
The sentences in a text are scored in SweSum by using a simple combination function, in
which the values of the different parameters (title, numerical data, etc.) are assigned
manually. These empirical initial values for Swedish texts (currently used in the sentence
scoring procedure by FarsiSum) should be adapted to the Persian text parameters, in the
future versions.

New Methods
Implementation of some new modules may help to increase the quality of summaries:

• Resolving acronyms and abbreviations.
• Implementation of co-reference methods such as Pronoun Resolution, recognition

of personal names, known places, etc.
• Using new evaluation methods such as gold standard by creating a Persian extract

corpus.

7 Conclusion
• As expected the field test showed that despite the ambiguity problems in Persian

texts and use of a very simple stop-list, the final summary was improved both in
the coherence and the preservation of important information.

• Use of an object oriented programming language which has support for Unicode,
in the implementation of the future versions of SweSum is necessary.

• Tokenization process in languages using an Arabic writing system is different due
to lack of representation of short vowels in the script and word/phrase
ambiguities.

• Most of methods used in SweSum are applicable to Persian but in some cases
language-specific solutions are required. For example the initial scoring values
are empirical and language-dependent.

• To use co-reference methods such as Pronoun Resolution, Synonym Resolution,
recognition of personal names, known places, etc in order to make the
summarized text more coherent.

Acknowledgement
I would like to thank my supervisors: Prof. Martin Volk at Stockholm University, Dr.
Hercules Dalianis and Martin Hassel at KTH for their guidance and support.
I would also like to thank Dr. Jennifer Spenader for her guidance and helpful comments
on my thesis.
Finally I would like to thank all the participants in the field test.

 40

8 Run the program
Go to http://swesum.nada.kth.se/index.html

SweSum - Automatic Text Summarizer by Martin Hassel and Hercules Dalianis
Localization, Interfaces and Swedish Pronominal Resolution by Martin Hassel

 På svenska, tack! به فارسی More options, please!

Please enter an apropriate URL adress and click on "Summarize".

http://sw esum.nada.kth.se/WashingtonPost.htm

Keywords that may be important for the
text.

Choose type of
text

Choose language of the
text

 New spaper English

Percent summarized from the original text: 30 %

Print keywords and statistics
Summarize

This page is also available in Swedish and Persian. [Appendix B]
To summarize a text:

• Choose an appropriate URL. Default URL:
http://swesum.nada.kth.se/WashingtonPost.htm

• Choose language of the text. Available languages are Swedish, English, Persian,
German, Spanish, Danish, French, Norwegian and generic.

• Choose type of text: newspaper or academic.
• Important keywords (user defined).
• Percent rate of the text to be summarized (0-100 %).
• Print statistics (Yes or No).
• Click the summarize button.
• The summarized text will be displayed:

 41

Summarized text:
…….
…….
Lexicon: English
Words before 847
Words after 240
Summary length: 28%
Type of text: newspaper
Keywords: falun statement government followers Chinese china
silence crackdown practitioner after

If you want to summarize a text/HTML file located on your PC or if you want more
options, click on More options, please!, :

 På svenska, tack! به فارسی Lesser options, please![URL]

Please type or paste a text of your own to summarize:

Alternatively, you can upload a text/HTML file from your own computer:

Keywords that may be important for the
text.

Choose type of
text

Choose language of the
text

 New spaper English

Summary of the original text: 30 percent

Print keywords and statistics Number of keywords: 10

Use pronoun resolution (only for Swedish)

Set weights for discourse parametres:
First line Bold Numeric values Keywords User keywords

1000 10 1.133 0.360 500
Summarize

 42

References

Boguraev, B. and Kennedy, C. 1997. Salience-based Content Characterization of Text
Documents. In Proceedings of the Workshop on Intelligent Scalable Text Summarization
at the ACL/EACL Conference, 2-9. Madrid, Spain.

Brunn, M., Chali, Y. and Pincha, C.J. 2001. Text summarization using lexical chains, in
Document Understanding Conference (DUC), New Orleans, Louisiana USA, September
13-14, 2001.

Dalianis, H. 2000. SweSum - A Text Summarizer for Swedish, Technical report, TRITA-
NA-P0015, IPLab-174, NADA, KTH, October 2000.

Dalianis, H. and Hassel, M. 2001. Development of a Swedish Corpus for Evaluating
Summarizers and other IR-tools. Technical report, TRITA-NA-P0112, IPLab-188,
NADA, KTH, June 2001

Dalianis, H. and Åström, E. 2001. SweNam - A Swedish Named Entity recognizer, its
construction, training and evaluation. Technical report, TRITA-NA-P0113, IPLab-189,
NADA, KTH.

Dalianis, H., Hassel, M., de Smedt, K., Liseth, A., Lech, T.C. and Wedekind, J. 2003.
Porting and evaluation of automatic summarization. In Holmboe, H. (ed.) Nordisk
Sprogteknologi 2003. Årbog for Nordisk Språkteknologisk Forskningsprogram 2000-
2004 Museum Tusculanums Forlag 2004 (Forthcoming).

Edmundson, H.P. 1969. New Methods in Automatic Extraction. Journal of the ACM
16(2) pp 264-285.

Fallahi, S. 2003. Presentation at Fifth ScandSum network meeting, Jan 25-28, 2003,
Norway.

Gong, Y. and Liu, X. 2001. Generic text summarization using relevance measure and
latent semantic analysis. In Proceedings of SIGIR 2001, page 19-25.

Hassel, M. 2000. Pronominal Resolution in Automatic Text Summarisation. Master
Thesis, University of Stockholm, Department of Computer and Systems Sciences (DSV).

Hassel, M. 2003. Exploitation of Named Entities in Automatic Text Summarization for
Swedish. In Proceedings of NODALIDA 03 - 14th Nordic Conference on Computational
Linguistics, May 30-31 2003, Uppsala, Sweden.

Karlgren, J. and Sahlgren, M. 2001. Vector-based Semantic Analysis using Random
Indexing and Morphological Analysis for Cross-Lingual Information Retrieval, Technical
report, SICS.

 43

Kupiec, J., Pedersen, J.O. and Chen, F. 1995. A Trainable Document Summarizer. In
Research and Development in Information Retrieval, 68–73.

Landauer, T., Laham, K. and Foltz, D. 1998. Learning human-like knowledge by
Singular Value Decomposition: A progress report. In M. I. Jordan, M. J. Kearns & S. A.
Solla (Eds.), Advances in Neural Information Processing Systems 10, (pp. 4551).
Cambridge: MIT Press.

Lazard, G. 1992. Grammar of contemporary Persian. Costa Mesa, California: Mazda
Publishers, 1992.

Lin, C.Y. 1995. Knowledge Based Automated Topic Identification. In the Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguistics.
Cambridge, Massachusetts, USA, June 1995.

Lin, C.Y. and Hovy, E. 1997. Identify Topics by Position, Proceedings of the 5th
Conference on Applied Natural Language Processing, March.

Lin, C.Y. 1999. Training a Selection Function for Extraction. In the 8th International
Conference on Information and Knowledge Management (CIKM 99), Kansa City,
Missouri, November 2-6, 1999.

Luhn, H.P. 1959. The Automatic Creation of Literature Abstracts. IBM Journal of
Research and Development pp 159-165.

Mani, I. and Maybury, M. 1999. Advances in Automatic Text Summarization, MIT
Press, Cambridge, MA, 1999. ISBN: 0262133598, Publisher: MIT Press

Megerdoomian, Karine and Rémi, Zajac 2000.
Processing Persian Text: Tokenization in the Shiraz Project. NMSU, CRL, Memoranda in
Computer and Cognitive Science (MCCS-00-322).

Neto, L., Freitas, A. and Kaestner, C. 2002. In G Bittencourt and GL Ramalho, editors,
Proc. 16th Brazilian Symp. on Artificial Intelligence (SBIA-2002). Lecture Notes in
Artificial Intelligence 2507, pages 205-215. Springer-Verlag, November 2002.)

Wiemer-Hastings, P. 1999. How Latent is Latent Semantic Analysis? in Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), Stockholm,
1999.

 44

Appendix A: HTML, XML & XHTML
HTML
The basic layout of an HTML document is shown below:

HTML Displayed in a browser
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
 <HTML>

 <HEAD>
 <TITLE>Title of the web page </TITLE>
 </HEAD>

 <BODY>
 The text. is bolded

 The <I>text </I> is italicized.

 The <U>text</U> is underlined.

 </BODY>

 </HTML>

The text is bolded.
The text is italicized.
The text is underlined.

<! DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
Each HTML document starts with DOCTYPE (Document Type Declaration) that
declares to the browser the version of the current HTML document.
<HTML> <HTML>

<HEAD> </HEAD>
Contains header information about the document such as, its title, keywords, description
and style sheet.
<TITLE> </TITLE>
The title of the document.
<BODY></BODY>
Contains the document’s content.

Indicates bold text.
<I> </I>
Indicates italic text.
<U></U>
Indicates underlined text.

Indicates line break.
There are some other tags that can be used in the summarization process:
 Ordered List: Defines a list of items which are automatically ordered; typically,
this is a sequential numbering from one to the number of list items.
 Unordered List: Defines a list of items which are automatically marked with a
"bullet"; typically, this is a solid disc or asterisk.

 45

<P> Paragraph: Defines a section of text as being a paragraph. The closing tag (</P>)
is technically optional, but its use is strongly recommended.
 Strong: Causes text to be strongly emphasized. The display of this text
varies by browser and user, but the suggested default is boldfaced text.
<U> Underline: Causes text to be underlined. Not supported by all browsers.

XML
EXtensible Markup Language (XML) is a markup language for documents containing
structured information. HTML is used to represent data while XML is designed to store
and exchange data between applications.
Unlike HTML, XML does not have predefined tags. You must define your own tags.
XML uses a Document Type Definition (DTD) or an XML Schema to describe the data.
The purpose of a Document Type Definition is to define the legal building blocks of an
XML document. It defines the document structure with a list of legal elements.
XML provides tagging capability for representation of text documents. The XML-tagged
representation can be used for NLP applications such as text summarization, information
extraction, and other analyses. The availability of XML-tagged representations of
documents provides a significant set of opportunities for further improvements of NLP
applications.

XHTML
XHTML stands for extensible HyperText Markup Language and its goal is to replace
HTML. It is very similar to HTML 4.0, but its syntax is stricter than HTML. XHTML
was created for two main reasons:

• To create a stricter standard for making web pages, reducing incompatibilities
between browsers

• To create a standard that can be used on a variety of different devices without
changes

There are several main changes in XHTML from HTML:
• All tags must be in lower case
• All documents must have a doctype (Document Type Declaration).
• All documents must be properly formed
• All tags must be closed
• All attributes must be added properly
• The name attribute has changed
• Attributes cannot be shortened
• All tags must be properly nested

An XHTML document optionally starts with an xml declaration:
<? xml version=”1.0” encoding=”ISO-8859-1”?>
The xml declaration is not required in all XHTML documents, unless the character
encoding is other than UTF-8, or UTF-16, but it is good practice to include it.

 46

Appendix B: User Interface

 خلا صه نويسی متن هرآولس داليانيس و مارتين هسّل

 خلاصه نويسی متن به فارسی نيما مزدك

به آنگليسی انتخاب پارامترهاي بيشتر

را آليك آنيد" خلاصه آنيد"لطفاً يك آدرس ايينترنتی مناسب بنويسيد و سپس آليد
http://w w w .iran-emrooz.de/maqal/keshtg820325.html

 اديتور فارسي

:% ?? : خلاصه متندرصد

 آمار لغات آليدي

يد ن آ صه خلا

 اطلاعات بيشتر در مورد خلاصه نويسی متن

 انتقادات و پيشنهادات به هرآولس؟
انتقادات و پيشنهادات به مارتين؟
انتقادات و پيشنهادات به نيما؟

SweSum © 1999-2003 Euroling AB سوسام© يورولينگ آ.ب ٢٠٠٣ - ١٩٩٩

مهم در متن) احتمالی(لغات آليدی زبانانتخاب نوع متنآنتخاب
روزنامه فارسي

 47

Appendix C: Results from the Field Test
P1…P7 Participant 1-7
T1…T3 Text 1-3
M1 FarsiSum in the mode one (the stop-list enabled)
M2 FarsiSum in the mode two (the stop-list disabled)
M3 SweSum in the Generic mode

Table A: The best method
Text P1 P2 P3 P4 P5 P6 P7 Method Result
T1 M1 M1 M1 M3 M2 M1 M3 M1(4), M2(1), M3(2)
T2 M1 M1 M3 M3 M3 M1 M1 M1(4), M2(0), M3(3)
T3 M1 M1 M1 M3 M2 M2 M3 M1(3), M2(2), M3(2)

 Table B: The best method (score 1-5)
Text Method P1 P2 P3 P4 P5 P6 P7 Method Result
T1 M1 5 5 4 2 3 5 3 27
T1 M2 4 4 2 3 4 4 2 23
T1 M3 3 2 1 4 3 2 4 19
T2 M1 4 5 4 3 3 4 4 27
T2 M2 3 4 2 2 3 3 3 20
T2 M3 2 3 5 4 5 3 3 25
T3 M1 5 5 5 2 3 1 3 24
T3 M2 4 4 2 3 3 2 2 20
T3 M3 2 3 3 4 4 3 4 23

Table C: Cohesion
Text P1 P2 P3 P4 P5 P6 P7 Method Result
T1 M1,M2 M 1,M 2 M 1 M 3 M 2 M1 M1,M3 M1(5), M2(3), M3(2)
T2 M1,M2 M1, M 2 M 1,M3 M 3 M 3 M2 M1,M3 M1(4), M2(3), M3(4)
T3 M 1,M2 M1,M 2 M 1 M 3 M 3 M2 M1, M2

M3
M1(4), M2(4), M3(3)

Table D: Important information preserved
Text P1 P2 P3 P4 P5 P6 P7 Method Result
T1 M1, M2 M1 M1, M2 M3 M2 M1 M3 M1(4),M2(3),M3(2)
T2 M1,M2 M1 M1, M3 M1 M1 M1 M1 M1(7),M2(1),M3(1)
T3 M1, M2 M1 M1,M2,M3 M3 M1 M2, M3 M1, M3 M1(5),M2(3),M3(4)

 48

Appendix D: The Stop-list
Pronoun آنان آنکه آنها او اين ايشان اينكه اين برخي تو خود خودم خودمان آقا آقای آقايان آن من

 خويش شما ما
Conjunction&
quantifier

آيا اما اگر البته اول اولين ای چند چه دوم آه می و ولی ها هم هر يا يعنی

Adverb م فقط آنجا اآنون امروز اينجا بسيار بسياری بطور بيش تمامی جا چنان چنين حقيقتا عليرغ
همان هيچ هنوز

Preposition از با بدون بجز بر برای به بی پس پيش تا توی توسط جز داخل در درباره درين را روی
 آنار ميانسوی عليه غير

Verb افزود است باشد باشيد باشيم بدهيد بکنيد بگذاريم بگوييم بماند بود بودند بوده خواهد
ند داريم داشت داشته دانند رسيده شد شدند شدهخواهند داد دادم دادند داده دارد دار شود

باشد آرد آردم آردن کردند آرده آند کنيد آنيم گردند گرفت گرفته گفت گفتم گفتند گفته می
آنم ندارد ندارم ندارند نداشته نمیآند میشود میآنند میآنم میرسد میداند میتواند می

هستيم هستندخواهيم نمايد نموده نيست نيستند هست

Appendix E: Persian Arabic Unicode
Arabic Unicode: http://www.alanwood.net/unicode/arabic.html

Character Decimal Hex Name

، 1548 060C ARABIC COMMA

 061B ARABIC SEMICOLON 1563 ؛

 061F ARABIC QUESTION MARK 1567 ؟

 ARABIC LETTER HAMZA 0621 1569 ء

 ARABIC LETTER ALEF WITH MADDA 0622 1570 آ
ABOVE

 ARABIC LETTER ALEF WITH HAMZA 0623 1571 أ
ABOVE

 ARABIC LETTER WAW WITH HAMZA 0624 1572 ؤ
ABOVE

 ARABIC LETTER ALEF WITH HAMZA 0625 1573 إ
BELOW

ARABIC LETTER YEH WITH HAMZA ABOVE 0626 1574 ئ

 ARABIC LETTER ALEF 0627 1575 ا

 ARABIC LETTER BEH 0628 1576 ب

 49

 ARABIC LETTER TEH MARBUTA 0629 1577 ة

 062A ARABIC LETTER TEH 1578 ت

 062B ARABIC LETTER THEH 1579 ث

 062C ARABIC LETTER JEEM 1580 ج

 062D ARABIC LETTER HAH 1581 ح

 062E ARABIC LETTER KHAH 1582 خ

 062F ARABIC LETTER DAL 1583 د

 ARABIC LETTER THAL 0630 1584 ذ

 ARABIC LETTER REH 0631 1585 ر

 ARABIC LETTER ZAIN 0632 1586 ز

 ARABIC LETTER SEEN 0633 1587 س

 ARABIC LETTER SHEEN 0634 1588 ش

 ARABIC LETTER SAD 0635 1589 ص

 ARABIC LETTER DAD 0636 1590 ض

 ARABIC LETTER TAH 0637 1591 ط

 ARABIC LETTER ZAH 0638 1592 ظ

 ARABIC LETTER AIN 0639 1593 ع

 063A ARABIC LETTER GHAIN 1594 غ

 ARABIC TATWEEL 0640 1600 ـ

 ARABIC LETTER FEH 0641 1601 ف

 ARABIC LETTER QAF 0642 1602 ق

 ARABIC LETTER KAF 0643 1603 ك

 ARABIC LETTER LAM 0644 1604 ل

 ARABIC LETTER MEEM 0645 1605 م

 ARABIC LETTER NOON 0646 1606 ن

 ARABIC LETTER HEH 0647 1607 ه

 50

 ARABIC LETTER WAW 0648 1608 و

 ARABIC LETTER ALEF MAKSURA 0649 1609 ى

 064A ARABIC LETTER YEH 1610 ي

٠ 1632 0660 ARABIC-INDIC DIGIT ZERO

١ 1633 0661 ARABIC-INDIC DIGIT ONE

٢ 1634 0662 ARABIC-INDIC DIGIT TWO

٣ 1635 0663 ARABIC-INDIC DIGIT THREE

٤ 1636 0664 ARABIC-INDIC DIGIT FOUR

٥ 1637 0665 ARABIC-INDIC DIGIT FIVE

٦ 1638 0666 ARABIC-INDIC DIGIT SIX

٧ 1639 0667 ARABIC-INDIC DIGIT SEVEN

٨ 1640 0668 ARABIC-INDIC DIGIT EIGHT

٩ 1641 0669 ARABIC-INDIC DIGIT NINE

Appendix F: A Summary sample created by FarsiSum

The Summary (30%)
 آثار و نتايج اعتراضات اخير دانشجويان

 .يی اگر در مضمون قاطع و در روش مسالمت آميز بماند شكست ناپذير می شودجنبش دانشجو•
دشمنان آزادی فقط زمانی می توانند مجموعه گسترده نيروهای مسلح را برای سرآوب، هماهنگ و •

 منسجم آنند آه اين جنبش به خشونت روی آورد

 علی آشتگر
 ١٣٨٢ خرداد ٢٥يكشنبه

اما نتايج اعتراضات اخير دانشجويی به اين جا . ی اين نقشه را نقش برآب آرداما اعتراضات دانشجويان تمام

 . ختم نمی شود
شرط گسترش اين جنبش در حدی آه اآثريت دانشجويان را حول دفاع از آزادی فعال آند، پيوند با جنبش

 :عمومی را ممكن سازد، و احتمال سرآوب جنبش دانشجويی را به حداقل برساند آن است آه
 جنبش دانشجويی به هيچ وجه از روش های مسالمت آميز فاصله نگيرد و در دام درگيری های خشونت -١

دشمنان آزادی فقط زمانی می توانند مجموعه گسترده نيروهای مسلح را برای سرآوب، . آميز درنغلتد
ی برعكس هرچه جنبش دانشجوي. هماهنگ و منسجم آنند آه جنبش دانشجويی به خشونت روی آورد

درعين قاطعيت در مضمون و خواسته ها، بيشتر به روش های مسالمت آميز مبارزه عليه استبداد وفادار
بماند، طيف عظيم تری از دانشجويان را به حرآت درمی آورد و سرآوب آن، هم به دليل ناتوانی دشمنان

 دانشجويان و هم به آزادی در توجيه نيروهای مسلح به تهاجم مسلحانه عليه اقدامات مسالمت جويانه

 51

 . دليل گسترده بودن جنبش دشوارتر می شود

 فعالان جنبش دانشجويی بايد راههای حرآات اعتراضی هماهنگ و سازمان يافته را بررسی آنند و -٢

ايجاد سلولها و . هرچه زودتر تشكيلات لازم برای سراسری آردن و همزمان آردن اعتراضات را ايجاد نمايند
اگر جنبش . هنگ آننده فعاليت دانشجويی مهمترين بخش چنين تشكيلاتی استآميته های هما

دانشجويی بتواند در پی افت و خيزهای خود به يك جنبش سراسری وسازمان يافته تبديل شود و صدها
هزار دانشجو را در حرآات همزمان و هماهنگ به فعاليت عليه استبداد بكشاند بی ترديد تحول بزرگی در راه

يری جنبش همگانی ملی عليه استبداد در ايران پديد می آيد، تحولی آه می تواند تا يك قيام ملی شكل گ
 . ارتقاء يابد

 خردادماه ٢٤شنبه

 علی آشتگر

The Original Text
 آثار و نتايج اعتراضات اخير دانشجويان

 .ذير می شودجنبش دانشجويی اگر در مضمون قاطع و در روش مسالمت آميز بماند شكست ناپ•
دشمنان آزادی فقط زمانی می توانند مجموعه گسترده نيروهای مسلح را برای سرآوب، هماهنگ و •

 منسجم آنند آه اين جنبش به خشونت روی آورد

 علی آشتگر
 ١٣٨٢ خرداد ٢٥يكشنبه

وافق پنهان و يا نخستين اثر اعتراضات اخير دانشجويان، بی اثر آردن تلاشهای اقتدارگرايان دردستيابی به ت

چرا آه هرچه مخالفت ها عليه استبداد آشكارتر ابراز شود،شانس اقتدارگرايان در . آشكار با آمريكا است
 .قبولاندن خود به آمريكا آمتر می شود

آقايان خامنه ای و رفسنجانی اميدواربودند آه با آنترل اوضاع داخلی و به حاشيه راندن رقبای اصلاح طلب
ائيها بفهمانند آه همه آاره ايران زمين ما هستيم و در اين سرزمين محكم ميخ خود را آوبيده خود به آمريك

البته سران حاآميت برای ماندن بر سرير . پس اگر رابطه با ايران می خواهيد بفرمائيد با ما تفاهم آنيد. ايم
بطه ايران با آمريكا قدرت اهل معامله و امتياز دادن هم هستند بويژه آن آه مامور عادی سازی را

و اگر تا امروز هم چنين توافقی با آمريكا حاصل نشده به آن دليل است آه . آقای هاشمی رفسنجانی باشد
 .دولت آمريكا تا به امروز نپذيرفته است آه با رژيم بی آينده آنونی توافق آند

ط هستند و با چالش ها و اعتراضات پيشتر نوشته بودم اگر اقتدارگرايان بتوانند نشان دهند آه بر اوضاع مسل

داخلی دست به گريبان نيستند، آن وقت شايد فرصت پيدا آنند با دادن امتياز و پذيرش شرايط آمريكا، با تنها
ابرقدرت جهان آه نقش عظيمی در تحولات منطقه پيدا آرده است به توافق برسند و دشمنی آن را به

طراحان اين سياست خوب . مر استبداد را درايران طولانی تر آننددوستی با خود بدل آنند و از اين راه ع
آه تبديل تمايلات دوستانه . می دانستند آه عادی سازی رابطه با آمريكا در شرايط آنونی برآات زيادی دارد

بخوانيد محروم آردن آمريكا از مهمترين ذخيره (نسل جوان ايران نسبت به آمريكا به گرايش دشمنانه
ايجاد روحيه انفعالی در اين نسل و بازشدن دست آنها در سرآوب داخلی از) خود در منطقهاستراتژيك

پس به هوشياری . اما اعتراضات دانشجويان تمامی اين نقشه را نقش برآب آرد. جمله اين برآات است
اما نتايج . دانشجويان و جوانان آه می دانند چه می خواهند و می دانند چه آارمی آنند بايد آفرين گفت

حرآات اعتراضی چندروز گذشته دانشجويی نشان . اعتراضات اخير دانشجويی به اين جا ختم نمی شود
می دهد آه نقشه فاشيستهايی آه طرح تهاجم خونين به آوی دانشگاهها را ريخته و پس از آن نيز فعالان

د تا بدينوسيله جنبش جنبش دانشجوئی را زندانی و مجريان آن حرآت جنايتكارانه را تشويق آردن
دشمنان آزادی پس از آن همه بيرحمی و حق آشی . دانشجويی را منفعل آنند، شكست خورده است

نسبت به جنبش دانشجويی و آن همه مصلحت جويی های ذليلانه اصلاح طلبان در برابر تهاجم به حقوق
دانشگاه، جنبش دانشجويی، ملت و سرآوب دانشجويان اميدوار بودند آه با غيرسياسی آردن دانشجو و

نتيجه آار آنها اما برعكس شده . يعنی موتور به حرآت درآورنده جنبش آزاديخواهانه ملی را خاموش آنند
جنبش دانشجويی با توهم زدايی نسبت به همه جناحهای حكومتی و هماهنگی و همدلی . است

نجائی رسيده است آه برای تبديل بی سابقه در دفاع از آزادی و حقوق بشر ظرف دو سال گذشته به هما
بلكه همه . آزادی يك امرطبقاتی نيست. شدن به يك جنبش مستقل و نيرومند ضد استبدادی بايد می رسيد

آزادی های فردی و سياسی با سرنوشت ايران و . طبقات بجز گروه اندك خودآامگان حاآم به آن نيازمندند

 52

دانشجويان نيز از يك طبقه معين نيستند از همه . رده استمنافع و مصالح حال و آينده ملت ايران گره خو
طبقات و اقشار جامعه ای هستند آه می خواهد به هرقيمتی شده دوران طولانی و دردناك استبداد را پشت

دانشجويان وقتی بر سر يك خواست ملی هماهنگ و همدل شوند، همه مردم را همراه و . سر گذارد
در ايران از هيچ حزب و گروه و طبقه ای بجز سپاه ميليونی دانشجويان آه چنين آاری . هماهنگ می آنند

 . متعلق به همه ملت و فرزندان همه مردم ايران اند ساخته نيست

جنبش دانشجويی ايران حالا ديگر بر سر خواست مبرم جامعه همدل و هماهنگ است، اما روش هايی آه
ونيز ظرفيت آن در انجام اعتراضات سازمان يافته، نامعلوم و هنوز در مبارزه عليه استبداد به آار خواهد گرفت

شرط گسترش اين جنبش در حدی آه اآثريت دانشجويان را حول دفاع از آزادی فعال . مورد سوال است
آند، پيوند با جنبش عمومی را ممكن سازد، و احتمال سرآوب جنبش دانشجويی را به حداقل برساند آن

 :است آه

انشجويی به هيچ وجه از روش های مسالمت آميز فاصله نگيرد و در دام درگيری های خشونت جنبش د-١

دشمنان آزادی فقط زمانی می توانند مجموعه گسترده نيروهای مسلح را برای سرآوب، . آميز درنغلتد
چرا آه در اين صورت اولا بخش . هماهنگ و منسجم آنند آه جنبش دانشجويی به خشونت روی آورد

می از دانشجويان از اين حرآات فاصله می گيرند و در نتيجه حرآات اعتراضی ضعيف و قابل سرآوب عظي
برعكس هرچه جنبش دانشجويی . می شوند و ثانيا آن آه استبداد نيز برای سرآوب توجيه پيدا می آند

داد وفادار درعين قاطعيت در مضمون و خواسته ها، بيشتر به روش های مسالمت آميز مبارزه عليه استب
بماند، طيف عظيم تری از دانشجويان را به حرآت درمی آورد و سرآوب آن، هم به دليل ناتوانی دشمنان
آزادی در توجيه نيروهای مسلح به تهاجم مسلحانه عليه اقدامات مسالمت جويانه دانشجويان و هم به

سلح نيز همگی دنباله رو مافيای فراموش نكنيم آه نيروهای م. دليل گسترده بودن جنبش دشوارتر می شود
سياسی حاآم برايران نيستند و چه بسا آه بسياری از افراد نيروهای مسلح با دانشجويان درد مشترك و

دانشجويان بايد حساب آنان را از حساب سران رژيم و گروه آوچك انصار حزب االله . خواست مشترك دارند
 . جدا آنند

اههای حرآات اعتراضی هماهنگ و سازمان يافته را بررسی آنند و فعالان جنبش دانشجويی بايد ر-٢

ايجاد سلولها و . هرچه زودتر تشكيلات لازم برای سراسری آردن و همزمان آردن اعتراضات را ايجاد نمايند
اگر جنبش . آميته های هماهنگ آننده فعاليت دانشجويی مهمترين بخش چنين تشكيلاتی است

فت و خيزهای خود به يك جنبش سراسری وسازمان يافته تبديل شود و صدها دانشجويی بتواند در پی ا
هزار دانشجو را در حرآات همزمان و هماهنگ به فعاليت عليه استبداد بكشاند بی ترديد تحول بزرگی در راه

شكل گيری جنبش همگانی ملی عليه استبداد در ايران پديد می آيد، تحولی آه می تواند تا يك قيام ملی
 . رتقاء يابدا

 خردادماه ٢٤شنبه

 علی آشتگر

