
Integrating STEP Schemata
using Automatic Methods

Hercules Dalianis1 and Eduard Hovy

Dept. of Computer and Systems Sciences
The Royal Institute of Technology (KTH)

and Stockholm University
Electrum 230

S-164 40 Kista, SWEDEN
ph. (+46) 8 16 49 16

email: hercules@dsv.su.se

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina Del Rey, CA 90292-6695

USA
ph. (+1) 310-822-1511 ext 731

email: hovy@isi.edu

Abstract
This paper describes a procedure to merge two STEP/AP EXPRESS schemata,
using automated methods to assist the merging process. The desire to integrate or
merge two schemata or ontologies is very common today (for example, it may be
necessary to integrate two models describing car manufacturing from two different
car manufacturing companies who just merged and need a common car
manufacturing model). This task is usually carried out manually and can be very
time-consuming. By (semi-)automating the process, the speed and accuracy of the
integration process can be increased.

We have developed a method that partially automates the process of schema
integration, by using various matching algorithms. Each algorithm proposes a set
of cross-schema links, sorted by expected reliability, which can then be validated
by a human. The algorithms employ concept names, super- and subclass
taxonomizations, attributes, and natural language text definitions. The methods are
implemented as a set of Perl Programs.

1 This work was partly funded by STINT - The Swedish Foundation for International Cooperation in
Research and Higher Education and Volvo Research Foundation, Volvo Educational Foundation and Dr
Pehr G Gyllenhammar Research Foundation.



2

1. Introduction
Modern society uses formal models, conceptual models, requirements engineering
schemata, and ontologies for various purposes. One problem common to all these
domains is cross-ontology integration; for example, the need to integrate a STEP AP
schema describing the production of a car with a STEP AP schema describing the
electronic circuits (of a car) to obtain a single common STEP AP schema. In this scenario
there is great risk that the same concept, defined in both schemata, will appear twice in the
merged schema. How can we find the redundant concepts? Since concepts can have the
same meaning but different names (synonyms), or the same name but different meanings
(homographs/homonyms), this is not a trivial problem. For example, in two STEP
Application Protocols (AP) studied in this paper, AP212 and AP214, the two concepts
document andarchived_document are synonyms, while the two distinct concepts
document_type  and document_type  are homographs/homonyms, being defined different-
ly in the two ontologies. This problem is typical of model integration in all types of
modeling.

2. STEP and Ontologies
STEP stands for STandard for the Exchange of Product model data, and is an ISO 10303
standard [Al-Timimi and MacKrell 96]. STEP has been developed by industry for the
exchange of product model data  between different platforms, such as CAD/CAM
platforms.

In the STEP standard, Application Protocols (AP’s) are standardized schemata within
each domain, expressing the standardized concepts. AP’s exists in several domains,
including automotive manufacturing, ship building, electrotechnical plants, and process
industry.  The Application Protocols are expressed in the data modeling language
EXPRESS [Schenk and Wilson 94]. EXPRESS is a static modeling language of entity-
relationship type.

Although one can view each AP as a domain ontology, AP’s are not very hierarchical.
Ontologies can be described as hierarchical conceptual models whose content ranges from
very general concepts to very domain specific concepts. In the Artificial Intelligence
community a large research effort has been devoted in ontology research, both in the
construction of general purpose and domain models and in their re-use in other
applications.

One of the first investigations of ontology reuse is found in [Biggerstaff and Richter
87], in which  different possibilities and approaches of reusing different components in
software development are discussed. In [Maiden and Sutcliffe 92] we find a description of
domain abstraction and the mapping to a new domain. [Neches et al. 91] discuss the



3

sharing, reuse and extension of knowledge bases, pointing out four bottlenecks in sharing
and reuse, and proposing a solution to overcome them. [Gruber 93] investigates the
sharing and reuse of ontologies over domains and representation languages. [Wielinga and
Schreiber 94] discuss the separation of knowledge into various layers in an ontology to
permit reuse of the ontologies.  [Dalianis 97] describes the modeling of a distribution
electrical network using the KACTUS  library of ontologies in the technical domain to
support the modeling.

A different class of use of ontologies is for lexicon acquisition and building of natural
language processing systems. The SENSUS ontology [Knight and Luk 94] at the
USC/Information Sciences Institute is built from a number of ontologies, among them the
Penman Upper Model [Bateman et al. 89] and WordNet [Miller 95]. SENSUS contains
over 70.000 concepts. The SENSUS ontology has been used for a number of natural
language applications, including machine translation [Knight and Graehl 97] and text
summarization [Hovy and Lin 97]. [Okumura and Hovy 94] link a bilingual dictionary to
an ontology for use within machine translation. [Rigau and Agirre 95] discuss a similar
approach using the semantic proximity of lexical objects to decide where in the ontology
they should be aligned.

Within the requirements engineering community, similar problems of schema
integration arise. [Johannesson 92] uses a set of integration assertions to find the
proximity of two different concept in a conceptual model. This method is not, however,
automated; the integration assertions are proposed by the user.

Until now nobody has used automatic methods to discriminate between concepts in
STEP schemata that are semantically close. We demonstrate this in the next section.

3. The Integration of STEP AP’s
We chose the following two STEP AP’s to be integrated: AP212 and AP214. AP212 is
the electrotechnical application protocol, containing 352 concepts, such as Organization,
Person, Point, Curve. AP214 is the automotive design application protocol, containing
501 concepts. Within each AP, some concepts are related through super- or subclass
links. With almost each concept a natural language text description is associated as its
definition.

The objective of the integration of the two AP’s was to make the resulting merged
schema non-redundant and consistent. The problem was to ensure that no concept
overlaps occurred.

Since AP212 and AP214 have 352 and 501 concepts respectively, one needs in
principle to make 352 x 501 = 176,352 comparisons to find all the right matches. If the
AP’s have a complete internal superclass taxonomization structure, the number of
comparisons can be trimmed by limiting the search to appropriate subtrees.  However, in



4

the case of AP212 and AP214, a total of only 49 superclass and subclass links are defined
(all for the general area of points and curves).

Our approach was to identify and extract the common concepts using a combination of
several methods. We implemented the following matching algorithms:

•  Concept name match
•  Definition match
•  First sentence definition match
•  Superclass match
•  Subclass match
•  Attribute match

and then implemented various combination functions that combined and weighted their
linking suggestions.

To preprocess the STEP files we used the Perl programming language [Wall et al. 96],
which is excellent for string processing. Macintosh and UNIX Workstations were used
for executing the Perl programs, MacPerl 5 and Perl 5 respectively. We compiled a set of
Perl programs that can be used as a standalone integration module.

STEP AP  
in EXPRESS 2 

HNF 2

Text 
definition 2

STEP AP 
in EXPRESS 1 

HNF 1

EXPRESS to HNF

Text
definition 1

Root table

Concept Name match

Definition match
First Sentence 
Definition match
Super and Sub class 
match

Warning
file 

Attribute match Suggested 
linked 
concepts

Figure 1. Overview of the schema merging process.

Our schema merging process takes as input two or more STEP AP EXPRESS files and
produces as output a file that gives guidelines of which concepts in the STEP AP
EXPRESS files are redundant or overlapping. This process consists of the following
steps:



5

The first step is to translate the EXPRESS files to a normalized form HNF
(Hercules-Hovy Normal Form) and to attach the corresponding text description to each
concept. An example of the HNF format can be seen in Section 3.1 below.

A warning file is also created informing about which concepts do not have text
definitions.

The second step is to compare the concepts in the two STEP AP HNF schemata:
each concept and its associated information (super- and subclasses, natural language text
descriptions, attributes) in one HNF file is matched against each concept in the other HNF
file, and the most similar concepts (highest matching scores) are retained.

The third step is to combine the individual scores, sort the concept match
suggestions, and present them to the user for human validation. (To prevent the result files
from becoming too large, we used a cut-off value and recorded only the match
suggestions with a weighted matching score of over 0.17).  Concepts whose matches the
user has accepted can then be merged, and concepts with rejected matches can be entered
into the merged ontology separately.

3.1  HNF

In order to apply our matching procedure to other kinds of ontologies in the future, we
defined a simple neutral format upon which the matching algorithms operate.

AP212
Entity: document
  Attribute: (id:identifier)
  Attribute: (name:label)
  Attribute: (description:text)
  Attribute: (kind:document_type)
  Attribute: (ur1:id)
  Definition: A Document is a reference to digital data or non-digital data that are not within the scope

of  ISO 10303. Each Document may be one of the following: a Change_description (see clause 4.2.24), a
Drawing  (see clause 4.2.77), a General_description (see clause 4.2.102), or a Specification_document (see
clause 4.2.226). The data associated with a Document are the following: ó alternate_designation; ó
custodian; ó described_object; ó designation; ó document_title; ó found_in; ó language; ó
type_of_document. Each Document has described_object defined by zero, one, or more
Assembly_relationship objects.  Each Assembly_relationship has described_object defined by zero, one, or
more Document objects....

AP214
Entity: archived_document
  Superclass: (external_document)
  Attribute: (archiving_format:undefined_object)
  Attribute: (found_in:undefined_object)
  Definition: An Archived_document is a piece of product data that is archived in a non-digital form.

An Archived_document is a type of External_document (see 4.2.162). The data associated with an
Archived_document are the following: -- archiving_format; -- found_in.

  Example: EXAMPLE 26 -- Paper plots of technical drawings, microfiche, or paper documents such
as calculations or test reports are examples for an Archived_document.

Figure 2. Two synonym concepts in HNF form



6

We created a concept rewriting routine to convert the formal AP concept definitions into
HNF, to attach the concepts’ text descriptions and attributes (which are stored in separate
files, by STEP tradition) to the concept, and to save all the information of interest
associated with each concept.  An example of HNF is shown above in Figure 2:

3.2 Matching Algorithms

In this subsection we define the six matches.

Concept name match (CNM)
The concept name match is based on the assumption that two AP concepts denoting the

same entity in the world are likely to have the same or similar names.  (We assume that
STEP AP creators work in English.)  Ideally, the match is an exact one-to-one letter
correspondence, which would give a value of 1.00; or less ideally a substring match that
measures the length of overlap between the two name strings. (In this work, we ignore
case differences: Document  and document  are deemed equal.)  We define the score as the
quotient of the substring length and the mean value of the lengths of the two matched
strings.  For concepts i and j, we use the formula:

CNM(i,j)  =  length(namei E namej) / ((length(namei)+length(namej))/2)

The resulting suggested link i–j is saved in a file together with the score. A slightly more
sophisticated name match is used in [Hovy 98], who rewards substring matches if they
both end at common intraname delimiters such as "-" and "_".  Still more sophisticated
matches that ignore delimiters, or allow them to be replaced with capital letters, can be
defined.

Definition match (DM)
The definition match is based on the assumption that two concepts referring to the same

entity in the world will have similar natural language definitions. Ideally, the two
definitions will be word-for-word identical, giving a match score of 1.00.  In practise,
terms may be pluralized, variant form of words may be employed, etc.  Therefore the
words in each definition are demorphed (i.e., converted to root form) before matching,
and duplicates and stop words ("a", "the", etc.) are removed before counting the number
of shared words.  To demorph, we used a root table [Lin 98] extracted from WordNet
[Miller 95]. The normalized demorphed definition of each concept in one HNF file is
matched against the normalized demorphed definitions of all concepts in the other HNF
file. For concepts i and j, we define the measure as:

DM(i,j)  =  number-of-words(defi E defj) / ((length(defi) + length(defj))/2)



7

If the score is above a threshold value (0.2) , the resulting suggested link i–j is saved in a
file together with the score. A similar heuristic is used in [Knight and Luk 94; Hovy 98].

First sentence definition match (FSDM)
The first sentence definition match is identical to the definition match.  However, we

use only the first sentence of a definition, since investigation of the typical content of text
definitions showed that the most important portions of the definitions appeared in the first
sentences. Subsequent sentences in one AP tended to contain references to ISO standards,
while subsequent sentences in the other contained examples and sometimes confusing
additions.

Superclass match and Subclass match (SUPC and SUBC)
The superclass match checks whether the name of the superclass of the target concept i

is exactly the same as the name of the superclass of a candidate matching concept j in the
other STEP AP.   If a match is found the suggested link i–j is saved in a file.

The subclass match checks whether concept i has some subconcept with exactly the
same name as some subconcept of concept j in the other STEP AP.  For subi,j the number
of identically named subconcepts shared by i and j, and meani,j the average number of
subconcepts for i and j, we use the formula:

SUBC(i,j)  =  (1 - 1/(1+meani,j)) * (subi,j / meani,j)

The second half of this formula reflects the proportion of the possible shared attributes that
are in fact shared, and the first half is a factor that rewards matches with more shared
attributes.  The resulting link i–j is saved in a file together with the score.

Attribute Match (ATT)
The attribute match checks whether some attribute(s) of the target concept i are the same

as some attribute(s) of a candidate matching concept j.  For attribsi,j the number of matched
attribute names between i and j and meani,j the average number of attributes of i and j, we
use the formula:

ATT(i,j)  =  (1 - 1/(1+meani,j)) * (attribsi,j / meani,j)

If this match occurs above threshold value, the resulting link i–j is saved in a file
together with the score.  A similar match is used in [Okumura and Hovy 94, Rigau and
Agirre 95].

3.3  Merging Algorithm

Each match is implemented as a separate Perl program, and the resulting concept link
suggestions and their scores are written to separate files. At the end, another Perl program



8

reads all the different suggestion files, integrates their scores, and sorts them by
decreasing score, to calculate which of the concepts are semantically closest to each other.

Since the best integration formula was not immediately apparent, and since each score
individually was normalized between 0 and 1, we adopted a simple linear combination
function:

a1*CNM(i,j) + a2*DM(i,j) + a3*FSDM(i,j) 
+ a4*SUPC(i,j) + a5*SUBC(i,j) + a6*ATT(i,j)

We varied the strengths of coefficients a1,... in different directions, but found little
practical difference in the final ranking of the scores.   Eventually we simply set all
coefficients equally to unity (e.g., a1 = a2 = a3 = a4 = a5 = a6 = 1), and renormalized the
result by dividing by 6:

integration_value(i,j)  =  (a1*CNM(i,j) + a2*DM(i,j) + a3*FSDM(i,j) 
+ a4*SUPC(i,j) + a5*SUBC(i,j) + a6*ATT(i,j) ) / 6

This function ranges between 0 and 1, with 1 indicating a perfect match.  This solution is
not optimal, and represents a point on which further research is required.

The results of this calculation are sorted in decreasing order and written to a result file.
Finally, another Perl program filters out all duplicates and already matched concepts,
leaving a list of suggested concept matches, sorted by expected goodness, for human
validation.

3.4  The Findings: Merging AP212 and AP214

Overall, the algorithm produced 74 match suggestions with combination scores above our
somewhat arbitrary threshold of 0.17.

We measured Precision (the correctness of the matching suggestion) in ranges of ten at
a time.  We classified each suggestion as either Correct, Incorrect, Close (if the match was
not strictly correct, but if we could find no concept that was more correct), and Unclear
(as concept definitions are often not specific enough).

 Of the top-scoring (10 suggestions, 9 were correct and 1 was close, for a precision
score of 90% (being strict, without partial credit for close matches).  Of the second-best
10 suggestions, 8 were close, 1 was incorrect, and 1 was unclear, giving a strict Precision
of 80% and a lenient Precision of 90% (counting close matches).  Of the fifth-best group
of 10 suggestions, 4 close, 5 incorrect and 1 was unclear giving, a strict Precision of 0%
and a lenient Precision of 40%. Overall Precision for the top-ranking 74 match
suggestions was 34% (strict) and 61% (lenient). See Table 1, below. 

Inspection of the match suggestions indicated the importance of concept names: the first
suggestion of differently-named synonym (non-homonym) concepts occurred at rank 27



9

with integration score of 0.2634. In the top 74 suggestions, 25 were homonyms, of
which 20 concepts were correct and 2 close. Thus a poor person’s matching algorithm
may employ just Name Match with fairly reasonable results.

Match
rank Correct Close

In-
correct

 Un-
clear

Strict
Precision

Lenient
Precision Score

1–10 9 1 0 0 0.90 1.00 >0.3438
11–20 8 0 1 1 0.80 0.80 >0.3156
21–30 4 4 1 1 0.40 0.80 >0.2427
31–40 3 4 2 1 0.30 0.70 >0.2142
41–50 0 4 5 1 0.00 0.40 >0.1984
51–60 1 4 5 0 0.10 0.50 >0.1881
61-70 0 1 7 2 0.00 0.10 >0.1721
71–74 0 2 2 0 0.00 0.50 >=0.1702
Y=74 25 20 23 6 0.34 0.61

Table 1. Ranking matches between AP212 and AP214

One may therefore argue that these results are skewed by the high likelihood of correct
matches for homonyms.  If we remove all homonyms, we will just have the total number
of non-homonym matches above threshold that is 49, of which 5 are correct and 18 close,
giving for synonyms a strict Precision value of 10% and a lenient Precision of 47%. (If a
non-homonym is correct then it is a synonym).

Type N Correct Close
Strict

Precision
Lenient

Precision
Homonyms 25 20 2 0.80 0.88

Non-homonyms 49 5 18 0.10 0.47
Y=74 74 25 20 0.34 0.61

Table 2. A comparison between homonyms and synonyms.
(The table do not show incorrect or unclear concepts)

Recall is much more difficult to measure.  Without manually reading all 352 x 501 =
176,352 possible pairs, we have no idea how many correct matches the algorithms
missed.  Any shortcuts we could think of to find likely matches have already been
implemented in the match algorithms!



10

Overall, we found the results rather encouraging: of the large number of possible
matches, the algorithms identified just 74 that had to be validated, of which about 1/3 were
correct and about 1/4 close.

3.5  Control: Merging Ontology AP210 and AP212

As a control we carried out the integration experiment with one new ontology, AP210.
AP210 is the electronic assembly, interconnection and packaging design Application
Protocol, and has 568 concepts. We merged AP210 with AP212, the electrotechnical
Application Protocol.  AP212 has 352 concepts, giving 199,936 possible combinations.
We found 14 suggested matches with integration values above 0.2092.

Match
rank Correct Close

In-
correct

 Un-
clear

Strict
Precision

Lenient
Precision Score

1–10 8 0 1 1 0.80 0.80 >0.2265
11-14 2 1 0 1 0.50 0.75 >=0.2092
Y=14 10 1 1 2 0.71 0.78

Table 3. Ranking matches between AP210 and AP212

The first suggestion of differently-named synonym (non-homonym) concepts occurred
at  rank 1 with integration score of 0.3536. We had altogether 10 homonyms of which 8
were correct and 1 close, and 4 synonyms of which 2 were correct

3.6  Conflicts and Restrictions

When integrating different matching algorithms’ results, conflicts can occur when they
make contrary suggestions. This can occur in the following situations: 

• Not enough information, or no definitions at all, are attached to a concept. This
can prevent two closely related concepts from being merged. A warning
mechanism were constructed to inform the user.

• Two concepts that are synonyms (e.g., group_relationship  and assembly_
component_relationship) are matched with each other, but there exist also
homonyms (e.g., group_relationship and group_relationship ) with perfect name
match that do not score well by their definitions.

• A whole group (an aggregate) of possible merges appears. For example,
dimension  does not have corresponding concept dimension in the other schema,
but just a set of subconcepts (e.g, curve_dimension, angular_dimension,
location_dimension  etc.), therefore the concept dimension can replace all these
subconcepts. A mechanism covering this type of cases would be desirable.



11

4. Conclusions and Future Research
Our research and implementation demonstrates a semi-automated method that is

efficient and accurate in finding related concepts across STEP AP schemata, using a set of
very simple heuristics.  It is perhaps surprising that such simple methods work as well as
they do, and it remains to be seen how well the methods presented in this paper will work
for ontologies that differ more widely.  One experiment we intend to try is the merging of
an AP schema with a natural language (NL)-oriented ontology WordNet or SENSUS.
Similar merging techniques for merging NL and Artificial Intelligence Ontologies such as
SENSUS [Knight and Luk 94], WordNet [Miller 95], and MIKROKOSMOS [Mahesh
96] report similar levels of accuracy [Rigau and Agirre 95; Hovy 98].

Even if the ontologies or schemata themselves are fairly similar, a question remains
about the similarity of the individual features of concepts.  For example, the definition
match will perform better when concepts’ definitions in the two ontologies are written by
the same person, or under the same general guidelines.  When not, suitable adaptations
must be made; such as our creation of the First Sentence Definition Match to overcome the
general disparity between definitions in AP212 and AP214.

One future research direction would be to cluster concepts which are semantically very
close, and have a technique to merge them into one concept (c.f. dimension with
curve_dimension, angular_dimension, location_dimension). At the moment, we just allow
monogamy, dimension  merged with curve_dimension.

In order to facilitate the human’s concept validation stage, we have created a program to
convert STEP AP schema definitions into inputs for the natural language generator
ASTROGEN [Dalianis 97]. Using this program, the user can ask to see an English
description of any concept (in particular, those that are suggested to be merged).  We have
also grouped the merging algorithms and the generator into a single tool, complete with
human validation interface, to support STEP AP integration (and similar work); see
[Dalianis 98].

In general ontologies, that are used for real domain-level reasoning/inference, contain
many formalized axioms and concept interrelationships, information that is not present in
STEP AP’s. With such formal nature, we are optimistic that additional, possibly more
powerful, matching techniques will be found.  Thus we do not believe that the potential of
this work is exhausted, and hope that it will be extended to be useful also in other
domains.

Acknowledgments
Great thanks to Chin-Yew Lin and Uli Germann at USC/Information Sciences Institute

for their help in the art of programming Perl.



12

5. References
Al-Timimi, K. and J. MacKrell. 1986.  STEP—Towards Open Systems. STEP

Fundamentals & Business Benefits, CIMdata.
Bateman, J., R.T. Kasper, J.D. Moore, and R.A. Whitney. 1987. A General

Organization of Knowledge for Natural Language Processing: The Penman Upper
Model. Unpublished research report, USC/Information Sciences Institute, Marina del
Rey.

Biggerstaff, T. and C. Richter. 1987. Reusability Framework, Assessment and
Directions. IEEE Software 4(2), pp. 41–49.

Dalianis, H. 1997. ASTROGEN - Aggregated deep and Surface naTuRal language
GENerator, http://www.dsv.su.se/~hercules/ASTROGEN/ASTROGEN.html.

Dalianis, H. and F. Persson. 1997. Reuse of an ontology in an electrical distribution
network domain. Proceedings of the AAAI 1997 Spring Symposium Series,
Ontological Engineering, pp 25–32, Stanford University, California.

Dalianis, H. 1998.  The VINST Approach:Validating and Integrating STEP AP Schemata
Using a Semi Automatic Tool,

 
Submitted to the The European Conference on

Integration in Manufacturing, IiM-98, to be held in Gothenburg, October 6-8, 1998.
Hovy, E.H. and C-Y. Lin. 1997. Automated Text Summarization in SUMMARIST.

Proceedings of the ACL Workshop of Intelligent Scalable Text Summarization,
July 1997.

Hovy, E.H. 1998. Combining and Standardizing Large-Scale, Practical Ontologies for
Machine Translation and Other Uses. Proceedings of the 1st International Conference
on Language Resources and Evaluation (LREC).  Granada, Spain.

Johannesson. P. 1993. A Logical Basis for Schema Integration. In Third International
Workshop on Research Issues in Data Engineering—Interoperability in Multidatabase
Systems, E. Bertino (ed), IEEE Press, Vienna, pp. 171–181.

Gruber, T.R. 1993. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition  5(2), pp. 199–220.

Knight, K. and S. Luk. 1994. Building a Large Knowledge Base for Machine
Translation.  Proceedings of the American Association of Artificial Intelligence
Conference (AAAI-94), Seattle, Washington.

Knight, K. and J. Graehl. 1997. Machine Transliteration. Proceedings of the ACL-97.
Madrid, Spain.

Lin, C-Y. 1998. Assembly of Topic Extraction Modules in SUMMARIST. Proceedings
of the AAAI Spring Symposium on Intelligent Text Summarization.

Mahesh, K. 1996. Ontology Development for Machine Translation: Ideology and
Methodology. New Mexico State University CRL research report MCCS-96-292.

Maiden, N.A. and A.G. Sutcliffe. 1992. Exploiting Reusable Specifications through
Analogy, Communications of the ACM 35(4), pp. 55–64.



13

Miller, G.A. 1995. WordNet: A Lexical Database for English. Communications of the
ACM, 38 (11), pp. 39–41.

Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W.R. Swartout.
1991. Enabling Technology For Knowledge Sharing. AI Magazine 12(3). 

Okumura, A. and E.H. Hovy. 1994. Lexicon-to-Ontology Concept Association using a
Bilingual Dictionary. Proceedings of the 1st American Machine Translation Association
(AMTA) Conference.

Rigau, G. and E. Agirre. 1995. Disambigating bilngual nominal entries against WordNet.
Workshop on the Computational Lexicon. 7th European Summer School in Logic,
Language and Information (ESSLLI’95).  Barcelona, Spain.

Schenk, D. and P. Wilson. 1994. Information Modeling the Express Way. Oxford
University Press.

Wall, L., T. Christensen, and R.L. Schwartz. 1996. Programming Perl. O’Reilly &
Associates Inc.

Wielinga, B.J. and A.Th. Schreiber. 1994. Conceptual Modelling of Large Reusable
Knowledge Bases. In K. Von Luck and H. Marburger (eds), Management and
Processing of Complex Data Structures, Springer Verlag Lecture Notes in Computer
Science no 777, pp 181–200.


