Henrik Bergstrém
DSV SU/KTH
1999-03-05

Writing a Delphi Property Editor
Version 1.0, 5 March, 1999

1. Introduction

If you regularly write Delphi components you'll sooner or later has to write specialised property editors
for some properties. Unfortunately thisis rather poorly described in the Delphi manuals. In my case |
found myself regularly using workarounds rather than sitting down and learn how to do it. Fortunately |
now have come to the point where | have no choice. Since memory is short, and other people probably
have the same problems as | have had, | decided to write down my experiences. To my help | had the
following documents. the Delphi help-files, [Borland, 1996], [Gopaniouk, 1998], and [Miano, 1997]. |
wrotein Delphi 4, but most of it should be valid for other versions of Delphi too. At a couple of occasions
| ran into problems which | couldn’t handle mysdlf, and I’ d like to take the apportunity to thank the
readers of comp.lang.pascal .del phi.components.writing for helping me with these.

Sincethisisthefirst timel write a property editor, and the paper iswritten smultaneoudy with the
development of the editor, the paper will likely contain errors, omissions, and obscurities. Please report
any such findings along with comments to me at henrikbe@dsv.su.se. Also because of the way the paper
iswritten it does contain all the errors| did during the coding. This might be irritating to some, but | fed
that it might be useful to see what kind of errors can occur.

2. The Writing

The problem | had was that | had a component (in this paper called TExampleContainer) which needed to
be associated with one or more components of another type (here called TExampleltems). Of course |
could have used a StringList, and then use FindComponent, but this would be too slow for my liking, plus
that it would prevent me from getting a list of the available TExampleltems to chose from. That is, |
wanted to be able to click on the Items property in TExampleContainer and get a window like the onein
Figure 1.

i TExampleltem Propert Editor

Available IJzed
E wampleltemn E wampleltemnz

Ok |

Figurel

2.1. Preparations

| started with creating a main form and the visible editor form (the onein Figure 1). Then | garted to
create the example components. Since | didn’t want to dabble with too many units | put all of them in the
same unit as the editor form.

Henrik Bergstrém
DSV SU/KTH
1999-03-05

Now the first problem occurred, TExampleContainer needed away to store the selected TExampleltems.
The obvious way to do thisisin an array, and since this should be allowed according to [Borland, 1996] |
decided to try it out first. This gave me a unit with the following code:

unit PropertyEditor Exanpl eUnit;
interface

uses

W ndows, Messages, SysUils, C asses, G aphics, Controls, Forns,
Di al ogs,

StdCrls;

type
TExanpl el t emPr opert Edi t or Form = cl ass(TFor n
Avai | abl eLi st Box: TLi st Box;
Label 1: TLabel ;
UsedLi st Box: TLi st Box;
Label 2: TLabel ;
AddBut t on: TButton;
RenmoveButton: TButton;
CkButton: TButton;

private

{ Private declarations }
public

{ Public declarations }
end;

TExanpl eltem = cl ass (TConponent)
private

{ Private declarations }

Fl :i nt eger;

public

{ Public declarations }

property i: integer read FI wite FI;
end;

TExanpl eCont ai ner = class (TConponent)
private

{ Private declarations }

FEI: array [1..10] of TExanpleltem

function Get FEI (I ndex: integer): TExanpleltem
procedure Set FEl (i ndex: integer; El: TExanmplelten;
public
{ Public declarations }
property Exanpleltens[lndex: integer]: TExanpleltemread Get FEI
wite setFEl; default;
end;

procedure register;

Henrik Bergstrém
DSV SU/KTH
1999-03-05

var
Exanpl el t enPr opert Edi t or Form TExanpl el t enPr opert Edi t or For m

i npl ement ati on
{$R *. DFM

procedure Regi ster;
begi n

Regi st er Conponent s(' HB', [TExanpl eCont ai ner, TExanplelten);
end;

functi on TExanpl eCont ai ner. Get FEI (I ndex: integer): TExanpleltem
begi n

/1 Naturally we need checks here etc

Get FEl : =FEl [| ndex] ;
end;

procedure TExanpl eCont ai ner. Set FEI (i ndex: integer; El: TExanpleltem;
begi n

/1 Naturally we need checks here etc

FEI [| ndex] : =El ;
end;

end.

Toseeif it worked | tried to create a TExampleContainer in the main forms OnShow:

procedure TMai nFor m For nShow Sender: TCObj ect);
var EC. TExanpl eCont ai ner;
El : TExanpl el tem
begi n
EC. =TExanpl eCont ai ner. Creat e(Appl i cati on);
El : =TExanpl el t em Cr eat e(Appl i cati on);
EC. Exanpl el tens[1] : =El ;
EC. Exanpl el tens[1] . i :=100;
Mai nForm caption: =inttostr(El.i);
end;

Thisworked perfectly, so | decided to try to install the components. Unfortunately it didn’t work. After a
lot of searching and debugging | posted a question to the newsgroup

comp.lang.pascal .del phi.components.writing, and the answer turned out to be quite strange. Apparently
Dephi is case sensitive on the register procedure. Changing this declaration to “ procedure Register”
solved the problem.

After opening the main form again | placed a TExampleContainer and a number of TExampleltemson it
and clicked on the TExampleContainer, and naturally didn’t see the Exampleltems property since |l had
forgot to add the published part to the declarations of both TExampleContainer and TExampleltem. Gosh,

Henrik Bergstrém
DSV SU/KTH
1999-03-05

what kind of trouble you get in when you are trying to do things manually. Unfortunately this resulted in
the following irritating error message when | tried to install TExampleContainer again:

[Error] PropertyEditorExampleUnit.pas(30): Published property 'Exampleltems cannot be of type
ARRAY

So, it didn’t work... What to do now? Either | could move the property out of the published section, or |
could change it into something that could be published. To move the property out of the published section
would mean that it wouldn’t show up in the object inspector, which we wanted. To change the type would
mean having to write a new class for that. In the end the latter solution was preferred, and a new class
called TExampleltemList was created. The relevant code now looked like:

TExanpl el tenli st = class (TObj ect)
private
{ Private declarations }
FEI: array [1..10] of TExanpleltem

function Get FEI (I ndex: integer): TExanpleltem
procedure Set FEl (i ndex: integer; El: TExanmplelten;
public
{ Public declarations }
property Exanpleltens[lndex: integer]: TExanpleltemread Get FEI
wite setFEl; default;
end;

TExanpl eCont ai ner = cl ass (TConponent)
private

{ Private declarations }

FEI L: TExanpl el tenLi st;

public
{ Public declarations }
publ i shed

property ltens: TExanpleltenlist read FEIL wite FEIL;
end;

functi on TExanpl el tenlist. Get FEI (1 ndex: integer): TExanpleltem
begi n

/1 Naturally we need checks here etc

Get FEl : =FEl [| ndex] ;
end;

procedure TExanpl eltenlist. Set FEI (i ndex: integer; El: TExanpleltem;
begi n

/1 Naturally we need checks here etc

FEI [| ndex] : =El ;
end;

Now, after recompiling the package the whole thing worked. When placing a TExampleContainer and a
couple of TExampleltems on the main form their respective properties appeared in the object inspector as
in Figure 2 below. Unfortunately since the Items property of TExampleContainer is a descendent of

Henrik Bergstrém
DSV SU/KTH
1999-03-05

TObject, and we haven't said anything el se, the object ingpector thinksthat it should provide an
expandable list of the properties of the TExampleltemList, which of courseisn’t what we want. Also we
haven't actually created the instance of TExampleltemList that FEIL should be set to. To do thiswe add a
congtructor and destructor to TExampleContainer.

Object Inspector
I EwampleCaontainerl: TEHampIEED:j

Propertiesz I Events I

+[tems fLTE =ampleltemList]
| Name |EwampleContainer]
Figure 2

/1 Under the public part of TEC
constructor create(AOmer: TComponent); overri de;
destructor destroy; override;

/1 The inplenmentation
constructor TExanpl eCont ai ner. creat e(AOmer: TConponent);
begi n
i nherited creat e(AOwer);
FEI L: =TExanpl el t enLi st. Cr eat e;
end;

destruct or TExanpl eCont ai ner. destr oy;

begi n
/1 1"mnot sure if this is really necessary,
/1l but lets do it anywhay
FEI L. destroy;

i nherited destroy;
end;

After the standard routine of recompilation and placement of the component on the main form | tried
clicking on the items property of the TExampleContainer. This gave me an “ Access Violation”. Sincel
wasn’'t sureif this depended on that TExampleltemList don’t contain any published properties or that no
property editor was defined for TExampleltemList | added a smple numerical property to
TExampleltemList. Thisdidn't solve the problem so now | thought it time to start building the actual
property editor.

2.2. Writing the basic property editor

Thefirst problem was to choose a suitable parent for the editor. According to the help files the following
ones where available apart from the base class TPropertyEditor:

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinal Property.

Henrik Bergstrém
DSV SU/KTH
1999-03-05

TlIntegerProperty

All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, suchas*A’..’Z".
TEnumProperty Any enumerated type.
TF oatProperty All floating-point numbers.

TStringProperty

Strings.

TSetElementProperty | Individual elementsin sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into alist of set-element
properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class's
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty | Componentsin the same form. The user cannot edit the component’ s properties,
but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise displays
hexadecimal value. Drop-down list contains the color constants. Double-click
opens the color-selection dialog box.

TFontNameProperty | Font names. The drop-down list displays al currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as accessto the font

dialog box.

None of these actually seemed to suit my needs, so | choose TPropertyEditor as the base class. | added
“ dsgnintf” to the uses clause and set out on my mission to construct my first property editor. The result

can be seen below.

TExanpl el t enLi st PropertyEditor =

public

function GetVal ue:string;
function GetAttributes: TPropertyAttri butes;
procedure Edit;

end;

cl ass(TPropertyEditor)

overri de;
overri de;
overri de;

function TExanpl el t enli st PropertyEditor. GetVal ue: string;

var n:integer;
begi n

result:="";
n:=1 to 10 do begin

for

i f (CGetConponent (0) as

TExanpl eCont ai ner) . itenms. Exanpl el t ens[n] <> ni |
resul t:=result+(Get Conponent (0) as TConponent). name+' °';

end;
end;

function

t hen

TExanpl el tenli st PropertyEditor. Get Attri butes: TPropertyAttri butes;

6

Henrik Bergstrém
DSV SU/KTH
1999-03-05

begin
resul t: =[paDi al og] ;
end;

procedure TExanpl el tenli st PropertyEditor. Edit;
var form TExanpl el t enPropert Edi t or For m

begi n
form := TExanpl el t enPropert Edi t or Form creat e(Appl i cati on);
try
f or m showibdal ;
finally
form Destroy;
end;
end;

| also changed the Register-procedure to ook like:

procedure Register;
begi n
Regi st er Conponent s(' HB', [TExanpl eCont ai ner, TExanplelten);
Regi st er Propert yEdi t or (
Typel nf o(TExanpl el t enli st),
nil, '', TExanpl el tenli stPropertyEditor);
end;

After recompilation of the library etc | tried it out again, and now, a miracle occurred, it actually worked.
More and lessin thefirst try too. Now all that was needed was to add the actual functionality to the
property editor (I thought).

2.3. Adding functionality

There were two things necessary to do to add the desired functionality to the property editor. | needed to
establish contact with the component which the user was editing, and | needed to get alist of all
TExampleltems on the form. Thefirst of these wasn’t much of a problem. The GetComponent in
TPropertyEditor was capable of doing that. The second needed some more thought though. The only way
I could think of was to use the components owner property and there iterate over al itemsin the
components array. Thisresulted in the following code:

procedure TExanpl eltenLi stPropertyEditor. Edit;
var form TExanpl el t enPr opert Edi t or For m
n:int eger;
begi n
form := TExanpl el tenPropert Edi t or Form creat e(Appl i cation);
try
/'l Wite the avail able TExanpleltens into the
/1 left Iistbox
with (Get Conponent (0) as TConponent).owner do begin
for n:=0 to conponent Count-1 do begin
i f Conponents[n] is TExanpleltemthen begin
form Avai | abl eLi st Box. i t ens. add(Conponent s[n] . nane) ;
end;
end;

Henrik Bergstrém
DSV SU/KTH
1999-03-05

end;
f or m showivbdal ;

/1 Add the TExanpleltens in the right |istbox
/1l to the TExanpl eCont ai ner
wi th form UsedLi st Box do begin
for n:=1 to Itenms. Count do begin
(Get Conponent (0) as
TExanpl eCont ai ner) . I tens. Exanpl el tens[n-1] : =(fi ndconponent (i tens[n-1])
as TExanpleltem;
end;
end;
finally
form Destroy;
end;
end;

Wi, now things looked good, the code worked, and | could choose the TExampleltemsin the property
editor. But, when | tested the application | noticed that the TExampleltem-references weren’t saved. After
much debugging, | concluded that they weren't streamed to the dfm-file and set about trying to get thisto
work. The help files provided little or no help, so | tried a new Usenet call, which unfortunately didn’t
receive any answers. Sofinally | did what | should have done a long time ago, | went out and bought a
book on the subject, [Teixeiraand Pacheco, 1998]. Following their example | added the following
methods to TExampleltemList.

procedur e ReadFEl Dat a(Reader: TReader);
procedure WiteFEl Data(Witer: TWiter);
procedure DefineProperties(Filer: TFiler); // Protected

Then | ran into another dead end, | didn’t know how to read and write the FEI from and to a stream. Since
the components already exists, | only want to handl e references to them, but how do you do this so that the
references work the next time you open the project? Two days later, after another Usenet question with
better luck, it al seemed so obvious. The missing piece of information that | got was that Delphi stores the
names of the components, and resolves the addresses after all components has been loaded.

procedure TExanpl eltenli st. ReadFEl Dat a(Reader: TReader);
var n:integer;
begi n
for n:=1 to 10 do begin
FEI Str: =Reader . ReadStri ng;
end;
end;

procedure TExampleltenlist. WiteFEI Data(Witer: TWiter);
var n:integer;
str:string;
begi n
for n:=1 to 10 do begin
if FEI[n]<>nil then str:=str+FEl[n].namne;

Henrik Bergstrém
DSV SU/KTH
1999-03-05

str:=str+' ;
end;
Witer. WiteString(str);
end;

procedure TExanpl eltenli st. DefineProperties(Filer: TFiler);
begi n
i nherited DefineProperties(Filer);

[/ 1 could of course had saved each of the FEl:s

[/ in turn, but that would be tedious. In that case

/1 1 would probably have saved only the parts where

/] there were data

Filer.DefineProperty(' FEI', ReadFEl Data, Wit eFEl Dat a, true);
end;

Now we save a list of names separated with spaces. The only thing that needs to be done now isto parse
this string when all components are available on the form. To do this | override the method “Loaded” in
TExampleContainer with the following code. The codeisahit ugly since | break the encapsulation
principle by accessing a private member of TExampleltemList, but it saved me a method call, and Delphi
allowsit since they are in the same unit so lets do it the quick and dirty way.

procedure TExanpl eCont ai ner. Loaded,;
var n:integer;
str,old:string;
begi n
ol d: =FEl L. FEI St r;
for n:=1 to 10 do begin
/| Parse the string
str:=copy(old, 1, pos('#, old)-1);
ol d: =copy(old, Pos('#' , old)+1, maxint);
/1l Find the TExanpelltemw th the sane nane
FEI L. FEI [n] : =(owner . Fi ndConponent (str) as TExanpl elten);
end;
i nherited | oaded,;
end;

This concludes this little experience report. It took me more time than | had expected, but in theend it
worked out anyway. The methods used to solve problems here goes along the line “if it’s stupid but
works, it ain't stupid”, and the code would need much improvement before it is anywhere near finished.
But that has to be |&ft to others since | now have to start using what | learned during the time | wrote this
program. If someone finds errors, omissions etc in this paper | would appreciate if they brought it tom my
attention. The same goes for better ways to solve the problems | experienced, such as finding components
€tc.

05 March 1999

Henrik Bergstrom

Henrik Bergstrém
DSV SU/KTH
1999-03-05

3. References
Borland, Borland Delphi, Component Writer's Guide, Version 2, 1996.

O. Gopaniouk, “Creating simple property editors for your custom components,” Delphi32 Online
Magazine, September 9th 1998.

J. M. Miano, “The Delphi Component Writing FAQ,” , 1997.
S. Teixeiraand X. Pacheco, Delphi 4 Developer's Guide: SAMS, 1998.

Appendix — Full Source Code

unit PropertyEditorExanpl eUnit;
i nterface

uses
/1l Contains the property editor classes

dsgnintf,

W ndows, Messages, SysUils, C asses, Graphics, Controls, Fornmns,
Di al ogs, StdCtrl s;

type
TExanpl eltem = cl ass (TConponent)
private
{ Private declarations }
Fl :i nt eger;

public

{ Public declarations }
publ i shed

property i: integer read FI wite FI;
end;

TExanpl el tenli st = class (TPersistent)
private
/1l Private decl arations
FEI Str: string;
FEI: array [1..10] of TExanpleltem
FI: integer;

function Get FEI (I ndex: integer): TExanpleltem
procedure Set FEl (i ndex: integer; El: TExanmplelten;

procedur e ReadFEl Dat a(Reader: TReader);
procedure WiteFEl Data(Witer: TWiter);

prot ect ed
procedure DefineProperties(Filer: TFiler); override;

10

Henrik Bergstrém
DSV SU/KTH
1999-03-05

public
/] Public declarations
property Exanpleltens[|ndex: integer]: TExanpleltem
read GetFEI wite setFEl; default;

publ i shed
/1l Test property added to see where the
/1l Access Violation canme from
property i: integer read FI wite FI;
end;

TExanpl eCont ai ner = cl ass (TConponent)
private
{ Private declarations }
FEI L: TExanpl el tenLi st;
Fl :i nt eger;
public
{ Public declarations }
constructor create(AOmer: TComponent); override;
destructor destroy; override;

prot ect ed
procedure Loaded; override;

publ i shed
property ltens: TExanpleltenlist read FEIL wite FEIL;
property i: integer read FI wite FI;

end;

TExanpl el t enli st PropertyEditor = class(TPropertyEditor)
public
function GetVal ue:string; override;
function GetAttributes: TPropertyAttributes; override;
procedure Edit; override;
end;

TExanpl el t emPr opert Edi t or Form = cl ass(TFor n
Avai | abl eLi st Box: TLi st Box;
Label 1: TLabel ;
UsedLi st Box: TLi st Box;
Label 2: TLabel ;
AddBut t on: TButton;
RenoveButton: TButton
kButton: TButton;
procedure AddButtond ick(Sender: TObject);
procedure RenoveButtond ick(Sender: TObject);
procedure UsedLi st BoxDbl Cli ck(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }
end;

11

Henrik Bergstrém
DSV SU/KTH
1999-03-05

procedure Regi ster;

var
Exanpl el t enPr opert Edi t or Form TExanpl el t enPr opert Edi t or For m

i npl ement ati on
{$R *. DFM

procedure Register;
begi n
Regi st er Conponent s(' HB', [TExanpl eCont ai ner, TExanplelten);
Regi st er Propert yEdi t or (
Typel nf o(TExanpl el t enli st),
nil, '', TExanpl el tenli stPropertyEditor);
end;

constructor TExanpl eCont ai ner. creat e(AOmer: TConponent);
begi n

i nherited create(AOwer);

FEI L: =TExanpl el t enLi st. Cr eat €;
end;

destruct or TExanpl eCont ai ner. destroy;
begi n

FEI L. destroy;

i nherited destroy;
end;

procedure TExanpl eCont ai ner. Loaded,;
var n:integer;
str,old:string;
begi n
ol d: =FEl L. FEI St r;
for n:=1 to 10 do begin
/| Parse the string
str:=copy(old, 1, pos('#, old)-1);
ol d: =copy(ol d, Pos('#' , old)+1, maxint);
/!l Find the TExanpelltemw th the sane nane
FEI L. FEI [n] : =(owner . Fi ndConponent (str) as TExanpl elten);
end;
i nherited | oaded,;
end;

functi on TExanpl el tenlist. Get FEI (1 ndex: integer): TExanpleltem
begi n

/1 Naturally we need checks here etc

Get FEl : =FEl [| ndex] ;

12

Henrik Bergstrém
DSV SU/KTH
1999-03-05

end;

procedure TExanpl eltenlist. Set FEI (i ndex: integer; ElI: TExanpleltem
begi n

/1 Naturally we need checks here etc

FEI [| ndex] : =El
end;

procedure TExanpl eltenli st. ReadFEl Dat a(Reader: TReader);
begi n

FEI St r: =Reader . ReadSt ri ng;
end;

procedure TExampleltenlist. WiteFEI Data(Witer: TWiter);
var n:integer;
str:string;
begi n
for n:=1 to 10 do begin
if FEI[n]<>nil then str:=str+FEl[n].nane;
str:=str+'#';
end;
Witer. WiteString(str);
end;

procedure TExanpl eltenlist. DefineProperties(Filer: TFiler);
begi n
i nherited DefineProperties(Filer);

[/ 1 could of course had saved each of the FEl:s

[/ in turn, but that would be tedious. In that case

/1 1 would probably have saved only the parts where

[/ there were data

Fil er. DefineProperty(' FEI', ReadFEl Data, Wit eFEl Dat a, true);
end;

function TExanpl el t enli st PropertyEdi tor. Get Val ue: string;
var n:integer;
begi n
result:="";
for n:=1 to 10 do begin
i f (GetConponent (0)
as TExanpl eContai ner).itens. Exanpl eltens[n] <> nil then
result:=result+
(Get Conmponent (0) as TExanpl eCont ai ner).itens. Exanpl el t ens[n] . name+' ';
end;
end;

functi on TExanpl el tenli st PropertyEditor. GetAttributes:
TPropertyAttri butes;
begi n
resul t: =[pabDi al og] ;

13

Henrik Bergstrém
DSV SU/KTH
1999-03-05

end;

procedure TExanpl eltenLi stPropertyEditor. Edit;
var form TExanpl el t enPr opert Edi t or For m
n: i nt eger;
begi n
form := TExanpl el t enPropert Edi t or Form creat e(Appl i cation);
try
/'l Wite the avail able TExanpleltens into the
/1 left Iistbox
with (Get Conponent (0) as TConponent).owner do begin
for n:=0 to conponent Count-1 do begin
i f Conponents[n] is TExanpleltemthen begin
form Avai | abl eLi st Box. i t ems. add(Conponent s[n] . nane) ;
end;
end;
end;

f or m showivbdal

/1 Add the TExanpleltens in the right |istbox
/1l to the TExanpl eCont ai ner
wi th form UsedLi st Box do begin
for n:=1 to Itens. Count do begin
nmessaged! g(((Get Conponent (0) as
TConponent) . owner. fi ndconponent (i tens[n-1]) as TExanpl el ten). nane,
nt I nformation, [nbCK], 0);
(Get Conponent (0) as
TExanpl eCont ai ner) . I tens. Exanpl el t ens[n] : =((Get Conponent (0) as
TConponent) . owner. fi ndconponent (i tens[n-1]) as TExanpl eltemnm
end;
end;
/1 M ght be necessary according to the FAQ
Desi gner. nodi fi ed;
finally
form Destroy;
end;
end;

procedure TExanpl el t enPropert Edi t or For m AddButt onC i ck(Sender :
Thj ect) ;
begi n

UsedLi st Box. | t ens. add(Avai | abl eLi st Box. i t ens[Avai | abl eLi st Box. i t emi ndex

1);
Avai | abl eLi st Box. it ens. Del et e(Avai | abl eLi st box. i t eni ndex) ;
end;

procedure TExanpl el t enPropert Edi t or For m RenoveBut t onCl i ck(Sender :
Thj ect) ;

14

Henrik Bergstrém
DSV SU/KTH
1999-03-05

begi n

Avai | abl eLi st Box. | t ens. add(UsedLi st Box. it ens[UsedLi st Box. it em ndex]);
UsedLi st Box. i tems. Del et e(UsedLi st box. i t em ndex) ;
end;

procedure TExanpl el t enPropert Edit or For m UsedLi st BoxDbl C i ck(
Sender: Tbject);
begi n
RermoveBut t onCl i ck(nil);
end;

end.

15

