
Abstract
Nearest Neighbour (NN) algorithms are one of the
more popular approaches to implementing Case-
Based Reasoning systems. In this paper a family of
Delphi components are presented that implements
an NN approach based on the Weighted Euclidean
Distance (WED). To make the approach more
general the distance measure of WED is
implemented by so called Comparators which are
specialised components for comparing attribute
values.

1. Introduction

Case-Based Reasoning (CBR) is an AI-
technique that is based on the assumption that
similar problems have similar solutions. One
popular approach to CBR is based on so called
Nearest Neighbour (NN) algorithms [1], i.e.
algorithms that calculate some sort of distance
between the cases and consider the cases with the
least distance between them to be the most similar.

This paper describes a family of Delphi
components for NN CBR which have been
developed within the project “Prediction
Assistance for Project Management” (PPL). The
components are being used in the development of
Predictor, an effort estimation tool which uses CBR
as one method of doing predictions.

How to accurately estimate the effort needed for
a project is a difficult problem. In particular this is
a challenge early in the project’s life cycle when
little is known about the project and both
overestimates and underestimates can have
disastrous effects as is argued e.g. in [2].
Traditionally this type of estimation has been done
by experts, possibly with the help of some
algorithmic model [3].

Unfortunately the quality of the predictions
made by algorithmic models have been
questionable, and the recent years have seen a

growing interest in alternatives, in particular Case-
Based Reasoning (CBR) [2], [4], [5] and Artificial
Neural Networks [6], [7], [8] has been studied.

CBR was included in Predictor because it is an
estimation technique which the user can understand
since it corresponds to one of the methods humans
use to make estimations, i.e. try to find a similar
problem you have solved before and apply the
solution here too. That all of the aforementioned
studies had shown estimation accuracies in line
with or better than many algorithmic models
further motivated our usage of CBR.

There are many tools available for building
CBR systems, e.g. the ones listed in [9] and [10].
Many of those tools implement CBR approaches
similar to the one used by our components and it
could probably been possible to use an existing
package with some adaptation. However, we chose
to implement the functionality ourselves. The main
reason was to allow easier integration with the
other modules in Predictor, but also that we needed
a more flexible distance function than was
available in the tools we examined. A component-
based approach was deemed appropriate since it
would allow easy reuse and extensions in the
future.

Although the components were developed to
predict project effort the implementation is quite
general, and they could very well be used for other
tasks where a straightforward nearest neighbour
CBR approach is considered appropriate. In
particular the ability to easily create new ways to
compare attributes might be useful.

2. The component family

The component family consists of two separate
hierarchies of components which together
implement the CBR approach and a group of
related components. The first hierarchy is shown in
Figure 1 and consists of the actual CBR-
components. These provide functionality to find

A Family of Delphi Components for Case-Based Reasoning

Henrik Bergström
Department of Computers and Systems Sciences

Stockholm University/Royal Institute of Technology
Email: henrikbe@dsv.su.se

similar cases (TAnalogy), to predict attribute
values (TPredictor), to test the prediction accuracy
(TJackKnifer), and to automatically set the weights
(TWeightSetter). The hierarchy is an inheritance
hierarchy, so arrows indicate inheritance. These
components are discussed in more detail in Section
2.1. To function properly they need access to one
or more comparators, which form the other
hierarchy (Figure 2). A comparator is a component
intended to compare a specific type of attribute.
The reasons for using comparators are discussed in
Section 2.1.1, and the available comparators are
presented in Section 2.2.

2.1. The CBR Components

2.1.1. TAnalogy1

The base class of the CBR components is
TAnalogy, which is used to identify similar cases,
or analogies as they sometimes are known, in the
case-base which can be realised in any database
compatible with Delphi such as Access, Interbase,
or Paradox. The method used to measure similarity
between cases is Weighted Euclidean Distance
(WED):

WED= ()()∑ ⋅
=

n

i
WqpD iii

1

2,
In the definition of WED, D is the distance

function. It measures the distance between two
cases for a specific attribute. pi and qi are the values
of attribute i for two cases p and q. Wi is the weight
associated with attribute i.

1 The T that proceeds all component names is a Delphi naming
convention meaning “Type”.

This is a simple approach, but the domain we
work in allowed us to set aside at least some of the
reasons for using more powerful approaches.
Software project effort estimation datasets are
commonly very limited in size as can be seen in the
survey of effort estimation algorithms given in [11]
where the number of projects range from 3 to 47
for the eight datasets used, and those recording
more than a few attributes are rare.

The implementation of the distance function D
posed some problems. Since we intended to
develop a general approach capable of handling
most types of attributes we could not constrain it to
e.g. numerical distance. Instead we introduced the
aforementioned comparators. Each instance of
TAnalogy must have one or more comparators
associated with it to implement D for a particular
attribute or group of attributes. How the distance is
measured is then up to the developer of the
comparator. Since each attribute can have its own
comparator this allows for a very flexible handling
of attributes if needed. Of course, if such flexibility
is unnecessary, all attributes can use the same
comparator.

As most implementations of nearest neighbour
algorithms TAnalogy is quite fast. The time to
search a case-base with 100 000 cases is
approximately 50 seconds on the average on a
Pentium 233 with 128 Mb of memory running
Windows NT4. Since the memory requirements of
the algorithm is linear to the size of the case-base
this corresponds to a search time of approximately
0.5 milliseconds per case.

The memory demands are also reasonable. In
the same 100 000 cases example the test program
used approximately nine Mb more memory than it
did initially. This amount is a maximum (for the
case-base used in the experiment) since the

TWeightSetterTJackKniferTPredictorTAnalogy

Figure 1 The CBR hierarchy

TComparator

TSetComparatorTListComparatorTMapComparatorTBasicComparator

Figure 2 The Comparator hierarchy

component can be configured to record information
on only the most similar cases, in which case the
memory demands drops.

2.1.2. TPredictor
If TAnalogy is responsible for finding analogies,

then TPredictor is responsible for using them. This
component extends TAnalogy by adding
functionality to make predictions of the value of an
attribute. How this prediction is done depends on
the type of the variable. Numerical attributes are
predicted by taking the mean (either the
arithmetical or the geometrical2) of the values for
the analogies. If needed, an adjustment function
can be specified by the user that takes into account
differences in e.g. size. Linear adjustment is
available as a default alternative. Nonnumeric
attributes are decided on by voting. The value
which most of the analogies have is chosen. In case
of ties, the value of the most similar case is used.
To limit the risk of ties a minimum number of votes
might be specified.

If none of these basic approaches suits the
needs, a user-defined function can be used instead.
This might seem slightly useless since it would be
almost as simple to just create a new descendent of
TAnalogy with the desired functionality. However,
to implement an extension function directly in
TPredictor allows one to use the capabilities of
TPredictor’s descendants since they use the
predictive capability of TPredictor e.g. when
assessing how good predictions the system is able
to make.

2.1.3. TJackKnifer
To control the quality of the predictions made,

the TJackKnifer-component can be used. Its
primary extension of TPredictor is that it introduces
the method jackknife which implements the
jackknifing, or “leave one out” technique for
testing the accuracy of the predictions. With this
technique a prediction is made for each case in the
case-base for which the actual value is known, and
then checked against the actual value. Jackknifing
is thus an O(n2) technique, and if the size of the
case-base prevents the usage of a pure jackknifing,
TJackKnifer can also jackknife on a random
selection of the cases.

2 Note that measurement theory only allows the usage of the
geometrical mean for attributes on a ratio scale [12]. TPredictor
does not make any such distinctions, and it is thus up to the user
to make sure that it is used only in valid settings.

Several metrics are used to measure the
accuracy of the predictions for numerical attributes
(in all cases Ai is the actual value, Ei the predicted):
the Mean Error (ME), the Mean Absolute Error
(MAE) the Mean Relative Error (MRE), the
Tracking Signal (TS), and Pred(x) which is the
percentage of the estimates that fall within x% of
the actual value. For Pred(x) the 5, 10, 25, and 50%
levels are given by TJackKnifer.

ME=
()

n

n

i ii EA∑ = −
1

MAE=
()

n

n

i ii EA∑ = −
1

MRE= ∑ =

−n

i
i

ii

A
EA

n 1

1

TS=
()
MAE

n

i ii EA∑ = −
1

2.1.4. TWeightSetter
CBR using Nearest Neighbour algorithms are

well known to be sensitive to irrelevant and
interrelated features. To overcome these problems
it is common to introduce weights on the attributes.
However, setting weights is not an easy task, in
particular in a domain where the relative
importance of attributes is not known [13]. An
example from Software Engineering is the
experience of the project team which most project
managers feel is a very important attribute when
estimating how much time and effort the project
will need. At the same time studies have failed to
show such dependencies [14]. Should this attribute
be ranked high or low? And more important, how
high or low?

There are algorithms available for automatic
setting of weights, e.g. the ones which are
discussed in [13]. TWeightSetter is intended to
implement such an algorithm, and we are currently
evaluating which one that best fits our needs.

2.2. The Comparators

As was discussed in Section 2.1.1, a comparator
is a component implementing the distance function
of WED for a particular attribute or group of
attributes. At the time of writing the following
comparators have been implemented TComparator,
TBasicComparator, TMapComparator, TList-

Comparator (Section 2.2.1-2.2.4) with a fifth one
TSetComparator (Section 2.2.5) being
implemented. The actual comparators are only
simple examples of what is possible to do with the
method, but the general idea should be clear.

The usage of comparators in the way described
in Section 2.1.1 necessarily means a reduction in
speed compared to implementing the functionality
directly into e.g. TAnalogy. Although we do not
expect this to be a major problem in our own
domain with its limited datasets and non-critical
response times, it might be of interest to others.
The speed reduction primarily comes from virtual
function calls and conversions.

2.2.1. TComparator
TComparator is the base class of the

comparators. It has no comparison capabilities of
its own since its purpose is to define the interface
of the comparators and to provide the users of the
components with an easy way to create their own
comparison functions if they do not wish to
subclass TComparator. This can be done by
defining the OnCompare event handler that is
triggered when a request for a comparison is made.
This means that users can attach any code they
want to compute the distance between attribute
values.

2.2.2. TBasicComparator
Sometimes there is no need for more advanced

comparisons than numerical distance for numerical
attributes, and equivalence for nonnumeric. Since
this is a common case, a special comparator

TBasicComparator has been built with this
functionality.

2.2.3. TMapComparator
To compare nonnumeric attributes using

equivalence might be reasonable for boolean
values, but often more advanced comparisons have
to be done. This rises the problem of how to
convert the difference between two nonnumeric
values to a numerical distance. TMapComparator
and TListComparator (Section 2.2.4) both
implement such conversions using different
approaches from the work by Osborne and Bridge
[15, 16].

For some types of attributes it is possible to map
each value in the domain of a nonnumeric attribute
to a numerical value so that these numbers can be
compared just as a numerical attribute. It is this
functionality that is provided by TMapComparator.
For example words describing temperature might
be mapped as in Table 1. Each word describing the
temperature is mapped to a typical temperature
value, i.e. we change the scale from ordinal to
interval. The mapped values can then be compared
using numerical distance.

2.2.4. TListComparator
An even simpler distance measure is to only

enforce an ordering on the values and use the
number of items between them as the distance
measure. This is done in TListComparator which
supports two types of lists, open (Figure 3), and

Table 1 Mapping discrete temperature values to numeric

Nonnum.
Value

Num. Value

Hot 30
Warm 20
Chilly 10
Cool 0

Figure 3 An open list

E

 F

A

C

D

B

Figure 4 A closed list

closed (Figure 4). In the latter case both the
smallest, and the largest distance can be used so
that e.g. the distance between item A and E in
Figure 4 is either 2 or 4 depending on the user’s
preferences. It is also possible to specify a
threshold value for the comparison. Items where
the distance between them is greater than or equal
to the threshold are considered to have no
similarity.

2.2.5. TSetComparator
A slightly similar situation is when it is

necessary to compare discrete attributes with one or
more classes associated with each value. An
example from Software Engineering is illustrated in
Figure 5 where the attribute is programming
languages. Now, to see whether Delphi is more
similar to Pascal than to Visual Basic we compare
the number of classes they have in common. Delphi
has two classes in common with Visual Basic
(those marked with a thick black line), they are
both “object oriented” languages, and they both
provide a visual environment to work in. On the
other hand, Delphi has only one class in common
with Pascal (the one marked with a dotted line),
they both use the same basic syntax. So in this
example Delphi would be more similar to Visual
Basic than to Pascal since they have more in
common. A more flexible version would be to
allow weights on the classes so that for example a
visual environment could be considered a more

important feature than a particular syntax. It is this
functionality that TSetComparator will contain.
The interface of TSetComparator is illustrated in
Figure 6.

2.3. Components for setting Weights

Apart from the actual CBR components the
package also contains five components each acting
as an interface to the weight files used by the
system. The TWeightFileInterface component is a
nonvisual component that contains methods to read
and write weight values, functionality that is used
by the other components.

The TAbstractGraphicalWeightFileInterface is
an abstract class used to build graphical interfaces
to the weight files. It is subclassed by the following
three components: TScrollWeightFileInterface,
TRadioWeightFileInterface, and TGraphical-
WeightFileInterface.

The TScrollWeightFileInterface component
(Figure 7) provides a simple interface where
scrollbars and/or editboxes are used to set the
weights. It is useful when more control over the
weights are needed than the other components can
give.

The TRadioWeightFileInterface component
(Figure 8) is a simpler interface than TScroll-
WeightFileInterface that should be more useful for
systems that is intended for ordinary users. Here
they are presented with just a few weight levels

Delphi VB

C++C

Pascal

Figure 5 Comparing different
programming languages

Figure 6 Interface for designing the rules of
how to compare programming languages

Figure 7 TScrollWeightFileInterface

which can also be given meaningful names. Of
course the number of alternatives, their labels, and
actual weights are fully controllable.

An alternative to the TRadioWeightFileInterface
is the TGraphicalWeightFileInterface component
(Figure 9). The general idea is the same but instead
of radio buttons, images are used.

3. Building a simple CBR System

Building a CBR system with the components
described above involves of the following steps:
1. Design and populate the case-base. The case-

base can be implemented in any database
compatible with Delphi or be the result of an

SQL-query.
2. Place the suitable CBR component on a Delphi

form and associate the database with it. Also
place the necessary comparators on the form
and connect the comparators to the attributes.

3. Create and if necessary edit the weight file. A
call to a method in TAnalogy will create a
weight file with all attributes equally weighted.
Editing can then be done e.g. with the
components described in Section 2.3.

4. Write code to call the appropriate methods and
to take care of the result of the method call.
This could e.g. be to present the predictions
made by TPredictor.

To illustrate the usage of the components the

The predicted
attribute

The prediction

The active case

The graphical
representation of
a TWeightSetter
component

A TScrollWeightFileInterface
component

The Case-Base

Figure 10 An example application

Figure 9 TGraphicalWeightFileInterfaceFigure 8 TRadioWeightFileInterface

distribution contains the small example application
illustrated in Figure 10. It is a very simple system
that uses a case-base from the UCI Machine
Learning Repository [17] where the problem is to
estimate the age of abalones. The total time to write
the application was approximately 15 minutes plus
the time to build the case-base.

4. Concluding Remarks and Future
work

In this paper we have described a family of
Delphi components for CBR. The components are
freely available for non-profit use e.g. education
and research, and can be downloaded with
integrated documentation from the PPL-projects
homepage: http://www.dsv.su.se/~terttu/nutek.html.

Currently the first version of the components are
being used in the development of Predictor, a
project management tool for effort estimation and it
is expected that the components will continue to
evolve during this development. In particular the
TWeightSetter and TSetComparator-components
must be implemented since they are necessary parts
of Predictor.

The next step would then be to open up
TAnalogy so that other distance measures than
WED could be used. The generalisation of WED to
k-NN is of course trivial, but other methods should
also be possible to use if needed. This will probably
be done in a way similar to how the adjustment
function of TPredictor is implemented, i.e. an
optional event handler that executes the users code
instead of WED. Furthermore, capability to handle
missing values in the case-base must be included.
Presently they are simply ignored.

Last but not least a better way to handle “split”
attributes is needed. For example one of the
datasets we used to evaluate Predictor contains lots
of information on which programming language
that had been used. This was coded so that the
percentage of the project which had been
implemented in a particular language was given in

separate columns, one for each of the 31 languages
used. Unfortunately many programming languages
are pretty similar, especially variants of a language.
This left us in the situation illustrated in Table 2. In
this case TAnalogy would indicate that Project 1
had some similarity with Project 3, but none with
Project 2 which it in reality (at least if given only
this information) was much more similar to. Today
the only way to handle this problem is to manually
edit the case-base so that these kinds of problems
do not occur or to create calculated fields which are
used instead. Neither of which is a satisfactory
solution.

5. References

[1] B. V. Dasarathy, Nearest Neighbor (NN)
norms: NN pattern classification techniques: IEEE
Computer Society Press, Los Alamitos, CA, 1991.
[2] S. Vicinanza, M. J. Prietula, and T.
Mukhopadhyay, “Case-based Reasoning in
Software Effort Estimation,” in Proceedings of the
11th International Conference on Information
Systems, 1990.
[3] F. Walkerden and R. Jeffery, “Software Cost
Estimation: A Review of Models, Processes and
Practice,” Centre for Advanced Empirical Software
Research, School of Information Systems,
University of New South Wales CAESAR
Technical Report 96/01, 1996.
[4] M. Shepperd and C. Schofield, “Estimating
Software Project Effort Using Analogies,” IEEE
Transactions on Software Engineering, vol. 23(12),
November 1997.
[5] F. Walkerden and R. Jeffery, “An Empirical
Study of Analogy-based Software Effort
Estimation,” Centre for Advanced Empirical
Software Research, University of New South
Wales 1998.
[6] J. Hakkarainen, P. Laamanen, and R. Rask,
“Neural networks in specification level software
size estimation,” in Proceedings of the 26th Annual
Hawaii International Conference on System

Table 2 The problem with programming languages

Language 1
Variant 1

Language 1
Variant 2

Language 2

Project 1 90% 0% 10%
Project 2 0% 100% 0%
Project 3 0% 0% 100%

Sciences: IEEE Computer Society Press, 1993, pp.
626-634.
[7] A. R. Venkatachalam, “Software Cost
Estimation Using Artificial Neural Networks,” in
Proceedings of the International Joint Conference
on Neural Networks. Nagoya, 1993.
[8] J. Bode, S. Ren, and Z. Shi, “Application of 3-
Layer Perceptrons to Cost Estimation,” in
Proceedings of the 1995 IEEE International
Conference on Neural Networks, 1995.
[9] AI-CBR Website, http://www.ai-cbr.org/,
Accessed 1999.
[10] Case-Based Reasoning homepage at the
University of Kaiserslautern, http://www.cbr-
web.org/CBR-Web/, Accessed 1999.
[11] C. F. Kemerer, “Software Cost Estimation
Models,” in Software Project Management:
Readings and Cases, C. F. Kemerer, Ed., 1991.
[12] N. E. Fenton and S. L. Pfleeger, Software
Metrics: A Rigorous & Practical Approach:
Thomson Computer Press, 1997.
[13] D. Wettschereck, D. W. Aha, and T. Mohri,
“A review and comparative evaluation of feature
weighting methods for lazy learning algorithms,”
Artificial Intelligence Review, vol. 11, pp. 273-314,
1997.

[14] C. F. Kemerer, “Bridging the Gap between
Research and Practice in Software Engineering
Management: Reflections on the Staffing Factors
Paradox,” in Experimental Software Engineering
Issues: Critical Assessment and Future Directions,
Lecture Notes in Computer Science 706, H. D.
Rombach, V. R. Basili, and R. W. Selby, Eds.:
Springer-Verlag, 1992.
[15] H. R. Osborne and D. G. Bridge, “We're All
Going on a Summer Holiday: An Exercise in Non-
Cardinal Case Base Retrieval,” in Proceedings of
the Sixth Scandinavian Conference on Artificial
Intelligence, SCAI'97, 1997.
[16] H. R. Osborne and D. G. Bridge, “A Case
Base Similarity Framework,” in Proceedings of the
3rd European Workshop on Case-Based Reasoning
EWCBR'96, Lecture Notes in Artificial Intelligence
1168, I. Smith and B. Faltings, Eds.: Springer
Verlag, 1996.
[17] P. M. Murphy and D. W. Aha, UCI Repository
of Machine Learning Databases,
http://www.ics.uci.edu/~mlearn/MLRepository.htm
l , 1994, Accessed 1999.

