
Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

1

Aspects of Case Based Reasoning for Cost and Effort
Estimation - A Preliminary Study
Abstract

Making an estimate of the time and effort needed for a software project is a challenge, especially at the
project start, nevertheless, an estimation is to be done, good or bad. Traditionally the project manager acts
as an expert and makes a judgement about what he believes to be realistic needs. In the last years AI-
techniques has begun to be used for estimation, and this paper describes the results of a study of applying
one such technique, Case Based Reasoning. The results of the study are well in line with other research on
CBR effort estimation and has lead to that the method has been chosen as one of the estimation methods
that should be implemented in the tool Predictor.

Keywords: Effort estimation, CBR, Predictor

1. Introduction
Every project manager must somehow be able to deliver a product satisfying the customer's needs at the
date scheduled and within budget. To do this he must face the problems of making schedules and budgets,
tasks which demand that he estimates time, cost, and effort. In order to make realistic estimates, data from
past projects is required. He can rely on his memory and adjust the estimates according to the differences
between the current project and the past ones. This approach, usually called expert judgement, may be
more or less reliable, depending on the human memory, the experience, the similarity of the projects, and
the manager's ability to make accurate adjustments.

Existing research has provided several other techniques and software support for estimation, the main type
being a number of algorithmic models, i.e. mathematical functions for the relationship between e.g. size
and effort. However, the last years there have been a growing interest in alternative approaches, one of
which is Case Based Reasoning. This paper presents some early results from using Case Based Reasoning
for prediction support within the project “Prediction Assistance for Project Management”1 (PPL). The
project aim is to develop prediction models for project planning and monitoring based on measurement
data, and to implement them in a project management tool set. Currently a prototype version of the tool
has been developed. Later it is intended that the more promising parts shall be included in tools developed
by the project’s industrial partners.

The purpose of the study was to test the approach since we had no previous experience with it. Although
CBR has been used for effort estimation with some success by others we needed to make sure that the
approach was suitable to our needs, and was possible to realise within the boundaries set by the PPL
project. Furthermore earlier research had showed some disagreement on important points that needed to be
examined.

The outline of this paper is as follows. In Chapter 2 various strategies for estimation are discussed briefly
followed in Chapter 3 by a more in depth motivation and implementation description of the approach used
by us, Case Based Reasoning. Chapter 4 presents some empirical results of using the tool, and finally
Chapter 5 presents some concluding remarks.

2. Cost Estimation
As was noted in the introduction, there are numerous techniques available for the estimation problem, as
well as tools implementing them. In this chapter the two dominating techniques, expert judgement, and

1 Stockholm University/Royal Institute of Technology, Sweden

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

2

algorithmic models are outlined followed in Section 2.3 by some of the AI-techniques that have been
gaining interest in the last years.

2.1. Expert Judgement
Despite the availability of estimation tools, and although it has long been a truism that estimators
commonly do not do any estimations at all [DeMarco, 1982], the most used method for estimating cost
and effort is expert judgement, [Walkerden and Jeffery, 1996]. With this technique, an expert, or a group
of experts, is called upon to produce an estimate using their own judgement. Commonly this involves
looking at similar projects developed earlier, with the assumption that similar projects need approximately
the same amount of resources to produce. The estimation can then be further altered to take into account
differences between projects such as different size and development environments.

The method can actually work quite well, especially if the expert is thoroughly familiar with the type of
application being developed as is seen in the study by [Vicinanza, et al., 1991] where the best estimator
was capable of making estimates within 32% on average. Unfortunately, training someone to be a good
estimator takes time, and can be quite costly, aspects which must not be overlooked in the Software
Engineering field with its high turnover rates.

2.2. Algorithmic Models
The ad hoc nature of expert judgement as an estimation technique has led to a search for more accurate
methods, preferably supported by computer tools. The most used method for cost estimation is to use
some sort of algorithmic (or parametric) method. According to [NASA, 1995] such a model “is one that
uses Cost Estimating Relationships (CERs) and associated mathematical algorithms (or logic) to establish
cost estimates”. Basically this means applying a mathematical model developed by regression to the cost
estimation problem. Normally this model is a variant of

effort = a⋅sizeß

where a indicates the relationship between size and effort, and ß indicates economies or diseconomies of
scale depending on whether it is below or above one [Fenton and Pfleeger, 1997], [Walkerden and Jeffery,
1996]. To get a more realistic model it is common to adjust the estimated value by a number of factors,
such as complexity, user commitment, application type etc.

The most common problem with the algorithmic models is that they are normally only relevant for a
specific environment, i.e. the one they were developed in. In other domains they are rarely accurate as is
showed in e.g. [Kemerer, 1987]. Partly this problem can be handled by calibrating the model to the local
environment, but great care must be taken to choose a suitable model. To meet this problem there has been
some interesting attempts of developing small local models, [Kok, et al., 1990]. In this case there is no
problem with models that are unsuitable for the environment, but this is offset by the fact that the
organisation has to have enough data and knowledge to be able to build and validate their own model. In
particular the amount of data required prevents the more widespread usage of local algorithmic models.

The most well known algorithmic model is probably COCOMO, [Boehm, 1981], now COCOMO II,
[Boehm, 1998], but there are many others, both non-proprietary and commercial. For a recent survey of
algorithmic techniques (as well as other cost estimation processes) see [Walkerden and Jeffery, 1996].

2.3. AI Techniques
The problems with the algorithmic models have led to a growing interest in other techniques for
estimation. In particular two AI-techniques, Artificial Neural Networks, and Case Based Reasoning,
which will be briefly discussed below, has been used. For more elaborate summaries of work on non-

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

3

algorithmic approaches to cost estimation see [MacDonell and Gray, 1996], and [Schofield, 1998]. Apart
from the two approaches discussed here these studies also include such approaches as Fuzzy Logic,
Regression/Classification Trees, and Rule Based systems.

2.3.1. Neural Networks
When Neural Networks (NN) are used for cost estimation, the estimation function is represented by a
network of units, each of which represent a simple function. With each connection between two units, a
weight is associated, and it is this weight that is normally used to train the network. For estimation
purpose the inputs of the network represent the information available about a project, and the output is the
prediction.

The most common form of NN is feed-forward networks, meaning networks where the connections are in
one direction only and there are no loops. A type which seems to dominate effort estimation applications
too. Training in such networks is usually done by back-propagation, an algorithm for dividing the blame
for the error between the actual and expected values between the various weights. For more information
on NN and back-propagation see e.g. [Russel and Norvig, 1995].

At an early stage of the project an NN approach was considered a strong alternative to CBR. Apart from
implementation issues, the main reasons why CBR was preferred was the black-box nature of the NN
approach and that it demands a large number of training cases to perform well.

NN applications to cost an effort estimation include the work by [Bode, et al., 1995], [Samson, et al.,
1997], [Srinivasan and Fisher, 1995], and [Venkatachalam, 1993].

2.3.2. Case Based Reasoning
The other AI-technique that has become popular is Case Based Reasoning (CBR) or estimation by
analogy, as it is sometimes known2. It can be seen as an attempt to formalise one of the methods
commonly used by humans for solving this type of problem. It is commonly assumed that this means that
the method is more acceptable than many other methods since it is possible to understand how it works
and examine the reasons for the estimation given. The method is based on the assumption that there are
data from past projects, describing the projects in terms of a number of attributes, e.g. time, costs,
application type, development environment, and product size. These data are then used by applying the
following three steps:

• The first step is to find suitable analogies. In this case these are the projects in the case base that are
similar enough in some respect to the one we want to estimate. A vital question here is how to
determine the similarity of projects. The most common technique is nearest neighbour algorithms, but
there are many other methods used in other CBR applications such as template retrieval and fuzzy
similarity measurements [Kolodner, 1993].

• The next step is to adjust the retrieved cases. In some applications of CBR such as reasoning about
law cases this might be the most important step. For effort estimation however it is normally
considered enough if the difference in size is taken into account.

• The last step is to make an actual estimation. In this domain it is usually done by taking the average of
the effort of the retrieved cases.

Examples of usage of CBR for estimation can be found in e.g. [Vicinanza, et al., 1990], [Finnie, et al.,
1997], and [Shepperd, et al., 1996]. All of these studies report estimation accuracy’s that are in line with
or better than most other estimation methods.

2 The exact meaning of these two terms is not totally defined. In this paper they are used interchangeably though.

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

4

3. CBR in Predictor
The relatively good results given by earlier studies using CBR for the estimation task in combination with
that it is an intuitively acceptable way of doing an estimation, lead to that it was chosen as one of the
estimation method to be included in Predictor, a prediction support tool which is one of the main
deliverables of the PPL project. At the time of writing two components have been implemented in Inprises
Delphi. The first is called TAnalogy and implements the first step of the CBR approach described above,
the other is TPredictor which implements the third one. There is currently no adjustment of the retrieved
cases.

The similarity measure used by TAnalogy is a nearest neighbour algorithm called Weighted Euclidean
Distance (WED, Figure 1) which is a generalisation of Pythagora's Theorem to n dimensions. WED
measures the similarity between two projects (p and q in Figure 1). In Figure 1, n is the number of
attributes, pi and qi are the values for attribute i for project p and q respectively, D is a distance function,
and Wi is the weight of attribute i. To find the projects in the case base which are most similar to the
current one the WED-distance is calculated between it and all other projects in the case base. The projects
which have the least distance to the given one are considered the most similar.

WED= ()()∑ ⋅
=

n

i
WqpD iii

1

2,

Figure 1: Weighted Euclidean Distance

The motivation for the choice of WED was that:

1. It is easy to calculate, and thus fast. Although it might be argued that the user is more interested in the
results than the time taken to get them, this is still important for the approach to be accepted.

2. It is also a measurement of similarity that it is possible to understand for the user. The hope is that this
will make it easier for the user to trust the program.

3. Earlier studies using nearest neighbour algorithms, e.g. [Finnie, et al., 1997], [Shepperd and Schofield,
1997], have shown good results.

4. Empirical Results

4.1. How to measure the quality of the predictions
Around TAnalogy a test environment has been built that allows automatic experiment using the ”leave one
out”, or “jack knifing” technique. With this technique a prediction is made for each project in the case
base using the rest of the projects. To measure the quality of the predictions made by the system we are
using two metrics:

• Pred(25) measures the percentage of the predictions that falls within 25% of the actual values

• The Magnitude of the Relative Error (MRE) measures the average absolute percentage of error. It is
calculated as:

MRE= ∑
=

−n

i i

ii

A
EA

n 1

1

where Ai is the actual value, and Ei is the estimated value. To facilitate reading it is common to
multiply the MRE by 100 to get a percentage rather than a ratio.

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

5

[Conte, et al., 1986] suggests that an estimation is acceptable if Pred(25) is at least 75%, and MRE is
≤25%. Tate and Verner suggest a value of Pred(30)=70% which according to [MacDonell and Gray, 1996]
is more realistic.

4.2. Data Analysis
Experiments have been conducted in the test environment on a four publicly available datasets described
in Table 1. Apart from the general question of the quality of the predictions made by the system, we
wanted to examine the following things:

• How many analogies give the best result?

• Does arithmetic or geometric (Figure 2) mean give the best predictions?

 n

n

i
iv∏

=1

Figure 2: Geometrical mean

Name No Projects No Attributes Source

Albrecht 24 7 [Albrecht and Gaffney, 1983]

DACS Productivity Dataset3 487 14 [DACS, 1992]

Kemerer 15 6 [Kemerer, 1987]

Kitchenham and Taylor 33 10 [Kitchenham and Taylor, 1985]

Table 1 Datasets used

The results of the experiments are summarised in Table 2 below. The quality of the predictions turned out
to be in line with the ones reported in other studies, but there are inconsistencies in the results. Since
[Shepperd and Schofield, 1997] also used two of these datasets, the Albrecht, and the Kemerer dataset, a
comparison with their tool Angel is close at hand, and is given in Table 3. Here we see that Angel
performed better on the Albrecht dataset, and Predictor on Kemerers.

Since there are only two small datasets to build the comparison on, it is hard to say what the results
depend on. Worth to note is that the Kemerer dataset contained no missing values, i.e. for all projects in
the case base all attributes were recorded, which where not the case with the Albrecht dataset. It is thus
quite possible that the worse values for the Albrecht dataset (Table 3) were caused by our way of handling
missing values in the case base. This was an incremental approach where only the attributes that all
projects had in common where used and projects were successively removed from the case base in the
hope that the remaining project should have more attributes in common. To see whether or not this held,
we removed all cases with missing values from the case base and ran the experiments again, getting the
values in Table 4. As we can see, the results for the Albrecht dataset is now in line with Angel, which
indicates that a simple removal strategy might work better for these small datasets than more advanced
algorithms. Similar experiments with the DACS dataset increased the quality of the predictions, but
nowhere near as much as for the Albrecht dataset.

3 Note that several projects were removed from the DACS dataset since they did not include the attribute we were
trying to predict, the number of man-months needed for the project.

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

6

No of predictors: 1 3 5

Dataset Mean \ Metric MRE Pred(25) MRE Pred(25) MRE Pred(25)

Albrecht Arithmetic

Geometric

92

92

39

39

75

70

30

34

82

73

39

39

DACS Arithmetic

Geometric

271

271

14

14

241

118

13

15

334

128

13

14

Kemerer Arithmetic

Geometric

54

54

33

33

75

72

26

33

74

63

26

46

Kitchenham and
Taylor

Arithmetic

Geometric

104

104

18

18

94

91

30

24

83

78

36

27

Table 2 Empirical results

Angel Predictor

Dataset \ Quality MRE MRE

Albrecht 62 92

Kemerer 62 54

Table 3 Comparison with Angel using one project as predictor

Angel Predictor

Dataset \ Quality MRE MRE

Albrecht 62 66

Kemerer 62 54

Table 4 Comparison with Angel using one project as predictor and no missing values

Since there is great variance in the quality of the predictions between the datasets, we compared the
attributes used in the different datasets with each other. The datasets that performed well were the ones
that had recorded several attributes related to the size of the projects, e.g. both Lines of Code, and
Function Points in the Kemerer dataset. This confirmed the rather obvious idea that it is important to
record the “right” attributes for the projects, i.e. attributes with a high correlation to effort. In the DACS
dataset, which is large, and contains many attributes, but still scored badly, most of the attributes dealt
with which programming language was used.

On the questions on how many projects to use as predictors, and whether to use arithmetic or geometric
mean to calculate the estimation, [Shepperd and Schofield, 1997] and [Finnie, et al., 1997] have different
opinions. According to [Shepperd and Schofield, 1997] the best predictions were made by taking the value
of the attribute directly from the single most similar project gave the best result. [Finnie, et al., 1997] on
the other hand claims that the best predictions were made by taking the geometrical mean of the three
most similar projects. Our experiments support the usage of geometrical mean, but is not able to give a

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

7

conclusive answer to how many projects to use as predictors. There is an indication though that the best
number of predictors varies with the size of the case base which seams reasonable. After all, if the case
base is small, we are lucky if even a single project is similar enough to the one we are interested in, but
with a large case base, many projects might be interesting. To try this hypothesis we ran an experiment
with the largest dataset to our disposal, the one from DACS. What we did was that we let all projects that
were given a similarity of at least 90%4 contribute to the prediction. As we can see from the results in
Table 5, the results are better than before, although there is still room for improvement before they are
good enough to be used in practice.

Arithmetic mean Geometric Mean

Dataset \ Quality MRE Pred(25) MRE Pred(25)

DACS 222 15 91 24

Table 5 Results using projects with more than 90% similarity to make predictions for the DACS
dataset

5. Concluding Remarks
Predicting the cost and effort needed for a software development project is a difficult problem where
much work have gone into the development of models, methods, and tools to help the task. This paper has
reported on a preliminary study of a CBR effort estimation model which is being implemented in the
prediction support tool Predictor.

The results showed a reasonable accuracy of the method with results well in line with other estimation
models although there is still room for much improvement, and we intend to continue on this path.
Currently our main effort is directed at implementing Predictor which apart from the CBR estimation
technique discussed here also will include support for the development of local algorithmic models.

6. References
A. J. Albrecht and J. E. Gaffney, jr, “Software Function, Source Lines of Code, and Development Effort
Prediction: A Software Science Validation,” IEEE Transactions on Software Engineering, vol. 9(6),
November 1983.

J. Bode, S. Ren, and Z. Shi, “Application of 3-Layer Perceptrons to Cost Estimation,” presented at IEEE,
1995.

B. W. Boehm, Software Engineering Economics: Prentice Hall, 1981.

B. W. Boehm, et al, COCOMO II Model Definition Manual: South Carolina University, 1998.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics & Models:
Benjamin/Cummings Publishing Company, 1986.

DACS, “The DACS Data Compendium,” Kaman Sciences Corporation, Technical Report 30602-89-C-
0082, 1992.

4 If WED is standardised to a value between 0 and 1, this means that the similarity score should be ≤0.1 for the
project to be used.

Henrik Bergström Aspects of Case Based Reasoning for Cost and Effort Estimation
DSV SU/KTH A Preliminary Study
1999-02-15

8

T. DeMarco, Controlling Software Projects: Management, Measurement, and Estimation: Prentice
Hall/Yourdon Press, 1982.

N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous & Practical Approach: Thomson
Computer Press, 1997.

G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “Estimating Software development Effort with Case-
Based Reasoning,” in Proceedings of the second International Conference on Case-Based Reasoning
ICCBR-97, D. B. Leake and E. Plaza, Eds., 1997.

C. F. Kemerer, “An Empirical Validation of Software Cost Estimation Models,” Communications of the
ACM, vol. 30(5), May 1987.

B. A. Kitchenham and N. R. Taylor, “Software Project Development Cost Estimation,” Journal of Systems
and Software, vol. 5, pp. 267-278, 1985.

P. A. M. Kok, B. A. Kitchenham, and J. Kirakowski, “The MERMAID Approach to software cost
estimation,” in Proceedings Esprit Technical Week, 1990.

J. Kolodner, Case-Based Reasoning: Morgan Kaufmann Publishers inc., 1993.

S. G. MacDonell and A. R. Gray, “Alternatives to Regression Models for Estimating Software Projects,”
in Proceedings of the IFPUG Fall Conference. Dallas TX: IFPUG, 1996, pp. 279.1-279.15.

NASA, Parametric Cost Estimating Handbook, http://www.jsc.nasa.gov/bu2/PCEHHTML/pceh.htm ,
1995.

S. Russel and P. Norvig, Artificial Intelligence A Modern Approach: Prentice Hall, 1995.

B. Samson, D. Ellison, and P. Dugard, “Software Cost Estimation using an Albus perceptron (CMAC),”
Information and Software Technology(39), pp. 55-60, 1997.

C. Schofield, “Non-Algorithmic Effort Estimation Techniques,” Empirical Software Engineering
Research Group, Bournemouth University, Technical Report TR98-001, 1998.

M. Shepperd and C. Schofield, “Estimating Software Project Effort Using Analogies,” IEEE Transactions
on Software Engineering, vol. 23(12), November 1997.

M. Shepperd, C. Schofield, and B. Kitchenham, “Effort Estimation Using Analogy,” in Proceedings of
ICSE-18, 1996, pp. 170-178.

K. Srinivasan and D. Fisher, “Machine Learning Approaches to Estimating Software Development
Effort,” IEEE Transactions on Software Engineering, vol. 21(2), February 1995.

A. R. Venkatachalam, “Software Cost Estimation Using Artificial Neural Networks,” in Proceedings of
the International Joint Conference on Neural Networks. Nagoya, 1993.

S. Vicinanza, M. J. Prietula, and T. Mukhopadhyay, “Case-based Reasoning in Software Effort
Estimation,” in Proceedings of the 11th International Conference on Information Systems, 1990.

S. S. Vicinanza, T. Mukhopadhyay, and M. J. Prietula, “Software-Effort Estimation: An Exploratory
Study of Expert Performance,” Information Systems Research, vol. 2(4), pp. 243-262, December 1991.

F. Walkerden and R. Jeffery, “Software Cost Estimation: A Review of Models, Processes and Practice,”
Centre for Advanced Empirical Software Research, School of Information Systems, University of New
South Wales CAESAR Technical Report 96/01, 1996.

